Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Monit Assess ; 185(4): 3057-79, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22832845

RESUMEN

Ecosystem classifications map an area into relatively homogenous units for environmental research, monitoring, and management. However, their effectiveness is rarely tested. Here, three classifications are (1) defined and characterized for Canada along summertime productivity (moderate-resolution imaging spectrometer fraction of absorbed photosynthetically active radiation) and wintertime snow conditions (special sensor microwave/imager snow water equivalent), independently and in combination, and (2) comparatively evaluated to determine the ability of each classification to represent the spatial and environmental patterns of alternative schemes, including the Canadian ecozone framework. All classifications depicted similar patterns across Canada, but detailed class distributions differed. Class spatial characteristics varied with environmental conditions within classifications, but were comparable between classifications. There was moderate correspondence between classifications. The strongest association was between productivity classes and ecozones. The classification along both productivity and snow balanced these two sets of variables, yielding intermediate levels of association in all pairwise comparisons. Despite relatively low spatial agreement between classifications, they successfully captured patterns of the environmental conditions underlying alternate schemes (e.g., snow classes explained variation in productivity and vice versa). The performance of ecosystem classifications and the relevance of their input variables depend on the environmental patterns and processes used for applications and evaluation. Productivity or snow regimes, as constructed here, may be desirable when summarizing patterns controlled by summer- or wintertime conditions, respectively, or of climate change responses. General purpose ecosystem classifications should include both sets of drivers. Classifications should be carefully, quantitatively, and comparatively evaluated relative to a particular application prior to their implementation as monitoring and assessment frameworks.


Asunto(s)
Ecosistema , Monitoreo del Ambiente/métodos , Biodiversidad , Ambiente , Estaciones del Año
2.
Environ Monit Assess ; 158(1-4): 593-608, 2009 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19020984

RESUMEN

The current mountain pine beetle (Dendroctonus ponderosae Hopkins) outbreak in British Columbia and Alberta is the largest recorded forest pest infestation in Canadian history. We integrate a spatial hierarchy of mountain pine beetle and forest health monitoring data, collected between 1999 and 2006, with provincial forest inventory data, and generate three information products representing 2006 forest conditions in British Columbia: cumulative percentage of pine infested by mountain pine beetle, percentage of pine uninfested, and the change in the percentage of pine on the landscape. All input data were formatted to a standardized spatial representation (1 ha minimum mapping unit), with preference given to the most detailed monitoring data available at a given location for characterizing mountain pine beetle infestation conditions. The presence or absence of mountain pine beetle attack was validated using field data (n = 2054). The true positive rate for locations of red attack damage over all years was 92%. Classification of attack severity was validated using the Kruskal gamma statistic (gamma = 0.49). Error between the survey data and field data was explored using spatial autoregressive (SAR) models, which indicated that percentage pine and year of infestation were significant predictors of survey error at alpha = 0.05. Through the integration of forest inventory and infestation survey data, the total area of pine infested is estimated to be between 2.89 and 4.14 million hectares. The generated outputs add value to existing monitoring data and provide information to support management and modeling applications.


Asunto(s)
Escarabajos/fisiología , Ecosistema , Monitoreo del Ambiente , Pinus/parasitología , Árboles/parasitología , Animales , Colombia Británica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA