Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nature ; 586(7831): 785-789, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-33057196

RESUMEN

In the mammalian lung, an apparently homogenous mesh of capillary vessels surrounds each alveolus, forming the vast respiratory surface across which oxygen transfers to the blood1. Here we use single-cell analysis to elucidate the cell types, development, renewal and evolution of the alveolar capillary endothelium. We show that alveolar capillaries are mosaics; similar to the epithelium that lines the alveolus, the alveolar endothelium is made up of two intermingled cell types, with complex 'Swiss-cheese'-like morphologies and distinct functions. The first cell type, which we term the 'aerocyte', is specialized for gas exchange and the trafficking of leukocytes, and is unique to the lung. The other cell type, termed gCap ('general' capillary), is specialized to regulate vasomotor tone, and functions as a stem/progenitor cell in capillary homeostasis and repair. The two cell types develop from bipotent progenitors, mature gradually and are affected differently in disease and during ageing. This cell-type specialization is conserved between mouse and human lungs but is not found in alligator or turtle lungs, suggesting it arose during the evolution of the mammalian lung. The discovery of cell type specialization in alveolar capillaries transforms our understanding of the structure, function, regulation and maintenance of the air-blood barrier and gas exchange in health, disease and evolution.


Asunto(s)
Capilares/citología , Alveolos Pulmonares/irrigación sanguínea , Alveolos Pulmonares/citología , Intercambio Gaseoso Pulmonar , Envejecimiento , Caimanes y Cocodrilos/anatomía & histología , Animales , Evolución Biológica , Capilares/metabolismo , División Celular , Autorrenovación de las Células , Senescencia Celular , Humanos , Masculino , Ratones , Alveolos Pulmonares/metabolismo , Células Madre/clasificación , Células Madre/citología , Tortugas/anatomía & histología
2.
Nature ; 529(7587): 470-2, 2016 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-26819039
3.
Zoology (Jena) ; 118(5): 299-301, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26142920

RESUMEN

Conventional wisdom has held that unidirectional pulmonary airflow is unique to birds and is an adaption enabling high rates of gas exchange, essential for sustaining flight as well as an endothermic metabolism. Recent visualizations and measurements of flow in the lungs of monitor and iguanid lizards show a bird-like pattern of unidirectional flow in these lineages. These findings call for a paradigm shift in our understanding of lung evolution in diapsids. This pattern of flow is not unique to birds. It is much older than previously believed, and it may be advantageous to the low-energy lifestyles typical of ectothermic animals.


Asunto(s)
Evolución Biológica , Lagartos/anatomía & histología , Lagartos/fisiología , Pulmón/fisiología , Movimientos del Aire , Animales , Hidrodinámica , Modelos Biológicos
4.
J Exp Biol ; 218(Pt 7): 991-8, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25657203

RESUMEN

Sauropsid vocalization is mediated by the syrinx in birds and the larynx in extant reptiles; but whereas avian vocal production has received much attention, the vocal mechanism of basal reptilians is poorly understood. The American alligator (Alligator mississippiensis) displays a large vocal repertoire during mating and in parent-offspring interactions. Although vocal outputs of these behaviors have received some attention, the underlying mechanism of sound production remains speculative. Here, we investigate the laryngeal anatomy of juvenile and adult animals by macroscopic and histological methods. Observations of the cartilaginous framework and associated muscles largely corroborate earlier findings, but one muscle, the cricoarytenoideus, exhibits a heretofore unknown extrinsic insertion that has important implications for effective regulation of vocal fold length and tension. Histological investigation of the larynx revealed a layered vocal fold morphology. The thick lamina propria consists of non-homogenous extracellular matrix containing collagen fibers that are tightly packed below the epithelium but loosely organized deep inside the vocal fold. We found few elastic fibers but comparatively high proportions of hyaluronan. Similar organizational complexity is also seen in mammalian vocal folds and the labia of the avian syrinx: convergent morphologies that suggest analogous mechanisms for sound production. In tensile tests, alligator vocal folds demonstrated a linear stress-strain behavior in the low strain region and nonlinear stress responses at strains larger than 15%, which is similar to mammalian vocal fold tissue. We have integrated morphological and physiological data in a two-mass vocal fold model, providing a systematic description of the possible acoustic space that could be available to an alligator larynx. Mapping actual call production onto possible acoustic space validates the model's predictions.


Asunto(s)
Caimanes y Cocodrilos/anatomía & histología , Laringe/anatomía & histología , Vocalización Animal , Caimanes y Cocodrilos/fisiología , Animales , Fenómenos Biomecánicos , Simulación por Computador , Femenino , Laringe/fisiología , Masculino , Membrana Mucosa/anatomía & histología , Pliegues Vocales/anatomía & histología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...