Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Plant Sci ; 14: 1261174, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37731978

RESUMEN

Urban vertical agriculture with lighting system can be an alternative green infrastructure to increase local food production irrespective of environmental and soil conditions. In this system, light quality control can improve the plant physiological performance, well as induce metabolic pathways that contribute to producing phenolic compounds important to human health. Therefore, this study aimed to evaluate the influence of RBW (red, blue and white) and monochromatic (red and blue; R and B, respectively) light associated or not with UV-B on photosynthetic performance and phenolic compound production in microtomato fruits cultivated via vertical agriculture. The experimental design adopted was completely randomized, with six replicates illuminated with 300 µmol·m-2·s-1 light intensities (RBW, RBW + UV, B, B + UV, R, and R + UV), 12 h photoperiod, and 3.7 W·m-2 UV-B irradiation for 1 h daily for the physiological evaluations. Twenty-six days after the installation, gas exchange, chlorophyll a fluorescence and nocturnal breathing were evaluated. Fruits in different ripening stages (green, orange, and red) were collected from microtomato plants grown under with different light qualities, to evaluate the physiological performance. The identification and quantification of the phenolic compound rutin was also performed to investigate their metabolic response. This study identified that plants grown under B + UV had high photosynthetic rates (A=11.57 µmol·m-2·s-1) and the fruits at all maturation stages from plants grown under B and B + UV had high rutin content. Meanwhile, the activation of suppressive mechanisms was necessary in plants grown under R because of the high nocturnal respiration and unregulated quantum yield of the non-photochemical dissipation of the photosystem II. These results highlight the importance of selecting light wavelength for vegetable cultivation to produce fruits with a high content of specialized metabolites that influence color, flavor, and health promotion, which is of special interest to farmers using sustainable cropping systems.

2.
J Hazard Mater ; 446: 130701, 2023 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-36603425

RESUMEN

Serious concerns have recently been raised regarding the association of Fe excess with neurodegenerative diseases in mammals and nutritional and oxidative disorders in plants. Therefore, the current study aimed to understand the physiological changes induced by Fe excess in Pistia stratiotes, a species often employed in phytoremediation studies. P. stratiotes were subjected to five concentrations of Fe: 0.038 (control), 1.0, 3.0, 5.0 and 7.0 mM. Visual symptoms of Fe-toxicity such as bronzing of leaf edges in 5.0 and 7.0 mM-grown plants were observed after 5 days. Nevertheless, no major changes were observed in photosynthesis-related parameters at this time-point. In contrast, plants growing for 10 days in high Fe concentrations showed decreased chlorophyll concentrations and lower net CO2 assimilation rate. Notwithstanding, P. stratiotes accumulated high amounts of Fe, especially in roots (maximum of 10,000 µg g-1 DW) and displayed a robust induction of the enzymatic antioxidant system. In conclusion, we demonstrated that P. stratiotes can be applied to clean up Fe-contaminated water, as the species displays high Fe bioaccumulation, mostly in root apoplasts, and can maintain physiological processes under Fe excess. Our results further revealed that by monitoring visual symptoms, P. stratiotes could be applied for bioindication purposes.


Asunto(s)
Araceae , Hydrocharitaceae , Contaminantes Químicos del Agua , Animales , Hierro , Biodegradación Ambiental , Bioacumulación , Contaminantes Químicos del Agua/toxicidad , Contaminantes Químicos del Agua/análisis , Agua , Mamíferos
3.
Front Plant Sci ; 12: 680545, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34367206

RESUMEN

Brosimum gaudichaudii is a plant species with medicinal relevance due to its furanocoumarin accumulation. The accumulation of these compounds in the root promotes predatory extractivism, which threatens the conservation of the species. In addition, little is known about the conditions for culturing of this species in vitro. The present study aimed to investigate how the application of different spectra of LEDs (white, blue, red, and combinations of blue and red at 1:1 and 3:1 ratios) can impact the morphophysiological and biochemical characteristics of B. gaudichaudii under different in vitro conditions. To evaluate the production of furanocoumarins in its leaves, which are easy-to-collect perennial organs, we cultured nodal segments in 50-mL tubes with MS medium under 100 µmol m-2 s-1 light and a photoperiod of 16 h for 50 days. We then submitted the seedlings biometric, anatomical, biochemical, and physiological evaluations. The different spectral qualities influenced several characteristics of the seedlings. Plants grown under red light showed greater stem elongation and larger and thinner leaves, strategies aimed at capturing a higher ratio of radiant energy. Exposure to the blue/red ratio of 1:1 induced increases in the concentration of the furanocoumarin psoralen, probably due to the diversion of carbon from primary metabolism, which resulted in lower growth. Cultivation under blue light or blue:red light at 3:1 triggered anatomical and physiological changes that led to higher production of secondary metabolites in the leaves, and at the 3:1 ratio, the seedlings also had a high growth rate. These results highlight the fundamental role of light in stimulating the production of secondary metabolites, which has important implications for the production of compounds of interest and indirect consequences for the conservation of B. gaudichaudii.

4.
Plant Physiol ; 183(4): 1638-1649, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32404411

RESUMEN

In the context of climate change, determining the physiological mechanisms of drought-induced mortality in woody plants and identifying thresholds of drought survivorship will improve forecasts of forest and agroecosystem die-off. Here, we tested whether continuous measurements of branch diameter variation can be used to identify thresholds of hydraulic failure and physiological recoverability in lavender (Lavandula angustifolia and Lavandula × intermedia) plants exposed to severe drought. Two parameters of branch diameter variation were tested: the percentage loss of diameter and the percentage loss of rehydration capacity. In two greenhouse experiments with different growth conditions, we monitored variation in branch diameter in the two lavender species exposed to a series of drought/rewatering cycles that varied in drought-stress intensity. Water potential, stomatal conductance, loss of xylem hydraulic conductance, and electrolyte leakage were also measured. We observed that plants were not able to recover when percentage loss of diameter reached maximum values of 21.3% ± 0.6% during drought, regardless of species and growth conditions. A percentage loss of rehydration capacity of 100% was defined as the point of no recovery, and was observed with high levels of cellular damage as estimated by electrolyte leakage measured at 75.4% ± 9.3% and occurred beyond 88% loss of xylem hydraulic conductance. Our study demonstrates that lavender plants are not able to recover from severe drought when they have used up their elastic water storage. Additionally, drought-induced mortality in these species was not linked to xylem hydraulic failure but rather to high levels of cell damage.


Asunto(s)
Sequías , Lavandula/anatomía & histología , Lavandula/fisiología , Electrólitos/metabolismo , Lavandula/metabolismo , Xilema/anatomía & histología , Xilema/metabolismo , Xilema/fisiología
5.
Int J Phytoremediation ; 22(4): 404-411, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31538487

RESUMEN

Glutathione is essential for plant tolerance to arsenic but few studies have focused on the coordination between the enzymes involved in its metabolism. We exposed Pistia stratiotes to four treatments (control, 5, 10 and 20 µM AsIII) for 24 h to evaluate the role of glutathione metabolism in arsenic response and determined the arsenic uptake, growth, membrane integrity, glutathione concentration and enzyme activities (γ-glutamyl-cysteine synthetase, glutathione reductase, glutathione peroxidase, and glutathione-S-transferase). Despite absorbing high concentrations of AsIII, plants maintained growth and cell membrane integrity when exposed to concentrations of up to 10 µM AsIII. The maintenance of these parameters involved glutathione concentration increase due to an increase in its biosynthetic pathway (higher γ-glutamyl-cysteine synthetase). In addition, an increase in the activity of glutathione reductase, glutathione peroxidase and glutathione-S-transferase also contributed to the conserve the cellular homeostasis. However, at the concentration of 20 µM AsIII, the high toxicity of AsIII affected glutathione concentration and glutathione metabolizing enzymes activities, which resulted in drastic decrease in growth and damage to cell membranes. These results showed that not only the glutathione concentration but also the coordination of the enzymes involved in the synthesis, oxidation and reduction pathways of glutathione is essential for AsIII tolerance.


Asunto(s)
Araceae , Arsénico , Arsenitos , Biodegradación Ambiental , Glutatión
6.
Physiol Plant ; 168(3): 576-589, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31102278

RESUMEN

A variety of cellular responses is needed to ensure the plants survival during drought, but little is known about the signaling mechanisms involved in this process. Soybean cultivars (EMBRAPA 48 and BR 16, tolerant and sensitive to drought, respectively) were exposed to the following treatments: control conditions (plants in field capacity), drought (20% of available water in the soil), sodium nitroprusside (SNP) treatment (plants irrigated and treated with 100-µM SNP [SNP-nitric oxide (NO) donor molecule], and Drought + SNP (plants subjected to drought and SNP treatment). Plants remained in these conditions until the reproductive stage and were evaluated for physiological (photosynthetic pigments, chlorophyll a fluorescence and gas exchange rates), hydraulic (water potential, osmotic potential and leaf hydraulic conductivity) and morpho-anatomical traits (biomass, venation density and stomatal characterization). Exposure to water deficit considerably reduced water potential in both cultivars and resulted in decrease in photosynthesis and biomass accumulation. The addition of the NO donor attenuated these damaging effects of water deficit and increased the tolerance index of both cultivars. The results showed that NO was able to reduce plant's water loss, while maintaining their biomass production through alteration in stomatal characteristics, hydraulic conductivity and the biomass distribution pattern. These hydraulic and morpho-anatomical alterations allowed the plants to obtain, transport and lose less water to the atmosphere, even in water deficit conditions.


Asunto(s)
Sequías , Glycine max/fisiología , Óxido Nítrico/fisiología , Estrés Fisiológico , Agua , Clorofila A , Nitroprusiato/farmacología , Fotosíntesis , Hojas de la Planta/fisiología
7.
Front Plant Sci ; 10: 1718, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-32038687

RESUMEN

Bark is a structure involved in multiple physiological functions, but which has been traditionally associated with protection against fire. Thus, little is known about how the morpho-anatomical variations of this structure are related to different ecological pressures, especially in tropical savanna species, which are commonly subjected to frequent fire and drought events. Here we evaluated how the structural and functional variations of bark are related to the processes of resilience and resistance to fire, as well as transport and storage of water in 31 native species from the Brazilian Cerrado. Because of their thick bark, none of the trees analyzed were top-killed after a severe fire event. The structural and functional variations of the bark were also associated with water storage and transport, functions related to properties of the inner bark. In fact, species with a thicker and less dense inner bark were the ones that had the highest water contents in the wood, bark, and leaves. Lower bark density was also related to higher stem hydraulic conductivity, carbon assimilation, and growth. Overall, we provide strong evidence that in addition to protection from fire, the relative investment in bark also reflects different strategies of water use and conservation among many Cerrado tree species.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA