Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cancers (Basel) ; 15(18)2023 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-37760615

RESUMEN

Tumour progression relies on interactions with untransformed cells in the tumour microenvironment (TME), including cancer-associated fibroblasts (CAFs), which promote blood supply, tumour progression, and immune evasion. Eph receptor tyrosine kinases are cell guidance receptors that are most active during development but re-emerge in cancer and are recognised drug targets. EphA3 is overexpressed in a wide range of tumour types, and we previously found expression particularly in stromal and vascular tissues of the TME. To investigate its role in the TME, we generated transgenic mice with inducible shRNA-mediated knockdown of EphA3 expression. EphA3 knockdown was confirmed in aortic mesenchymal stem cells (MSCs), which displayed reduced angiogenic capacity. In mice with syngeneic lung tumours, EphA3 knockdown reduced vasculature and CAF/MSC-like cells in tumours, and inhibited tumour growth, which was confirmed also in a melanoma model. Single cell RNA sequencing analysis of multiple human tumour types confirmed EphA3 expression in CAFs, including in breast cancer, where EphA3 was particularly prominent in perivascular- and myofibroblast-like CAFs. Our results thus indicate expression of the cell guidance receptor EphA3 in distinct CAF subpopulations is important in supporting tumour angiogenesis and tumour growth, highlighting its potential as a therapeutic target.

2.
Growth Factors ; 40(3-4): 119-152, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35861197

RESUMEN

Organ-specific metastasis to secondary organs is dependent on the formation of a supportive pre-metastatic niche. This tissue-specific microenvironmental response is thought to be mediated by mutational and epigenetic changes to primary tumour cells resulting in altered cross-talk between cell types. This response is augmented through the release of tumour and stromal signalling mediators including cytokines, chemokines, exosomes and growth factors. Although researchers have elucidated some of the cancer-promoting features that are bespoke to organotropic metastasis to the lungs, it remains unclear if these are organ-specific or generic between organs. Understanding the mechanisms that mediate the metastasis-promoting synergy between the host microenvironment, immunity, and pulmonary structures may elucidate predictive, prognostic and therapeutic markers that could be targeted to reduce the metastatic burden of disease. Herein, we give an updated summary of the known cellular and molecular mechanisms that contribute to the formation of the lung pre-metastatic niche and tissue-specific metastasis.


Asunto(s)
Exosomas , Neoplasias , Exosomas/metabolismo , Exosomas/patología , Humanos , Pulmón , Metástasis de la Neoplasia/patología , Neoplasias/metabolismo , Transducción de Señal , Microambiente Tumoral
3.
Biomolecules ; 12(3)2022 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-35327593

RESUMEN

Primary tumours, particularly from major solid organs, are able to disseminate into the blood and lymphatic system and spread to distant sites. These secondary metastases to other major organs are the most lethal aspect of cancer, accounting for the majority of cancer deaths. The brain is a frequent site of metastasis, and brain metastases are often fatal due to the critical role of the nervous system and the limited options for treatment, including surgery. This creates a need to further understand the complex cell and molecular biology associated with the establishment of brain metastasis, including the changes to the environment of the brain to enable the arrival and growth of tumour cells. Local changes in the vascular network, immune system and stromal components all have the potential to recruit and foster metastatic tumour cells. This review summarises our current understanding of brain vascular microenvironments, fluid circulation and drainage in the context of brain metastases, as well as commenting on current cutting-edge experimental approaches used to investigate changes in vascular environments and alterations in specialised subsets of blood and lymphatic vessel cells during cancer spread to the brain.


Asunto(s)
Neoplasias Encefálicas , Vasos Linfáticos , Encéfalo/patología , Neoplasias Encefálicas/patología , Humanos , Sistema Linfático/fisiología , Metástasis de la Neoplasia/patología , Microambiente Tumoral
5.
Front Immunol ; 10: 518, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31105685

RESUMEN

Chemokines are a family of small protein cytokines that act as chemoattractants to migrating cells, in particular those of the immune system. They are categorized functionally as either homeostatic, constitutively produced by tissues for basal levels of cell migration, or inflammatory, where they are generated in association with a pathological inflammatory response. While the extravasation of leukocytes via blood vessels is a key step in cells entering the tissues, the lymphatic vessels also serve as a conduit for cells that are recruited and localized through chemoattractant gradients. Furthermore, the growth and remodeling of lymphatic vessels in pathologies is influenced by chemokines and their receptors expressed by lymphatic endothelial cells (LECs) in and around the pathological tissue. In this review we summarize the diverse role played by specific chemokines and their receptors in shaping the interaction of lymphatic vessels, immune cells, and other pathological cell types in physiology and disease.


Asunto(s)
Quimiocinas/inmunología , Vasos Linfáticos/inmunología , Animales , Citocinas/inmunología , Células Endoteliales/inmunología , Humanos , Inflamación/inmunología
6.
Cancer Res ; 79(7): 1558-1572, 2019 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-30709930

RESUMEN

Metastasis via the lymphatic vasculature is an important step in cancer progression. The formation of new lymphatic vessels (lymphangiogenesis), or remodeling of existing lymphatics, is thought to facilitate the entry and transport of tumor cells into lymphatic vessels and on to distant organs. The migration of lymphatic endothelial cells (LEC) toward guidance cues is critical for lymphangiogenesis. While chemokines are known to provide directional navigation for migrating immune cells, their role in mediating LEC migration during tumor-associated lymphangiogenesis is not well defined. Here, we undertook gene profiling studies to identify chemokine-chemokine receptor pairs that are involved in tumor lymphangiogenesis associated with lymph node metastasis. CCL27 and CCL28 were expressed in tumor cells with metastatic potential, while their cognate receptor, CCR10, was expressed by LECs and upregulated by the lymphangiogenic growth factor VEGFD and the proinflammatory cytokine TNFα. Migration assays demonstrated that LECs are attracted to both CCL27 and CCL28 in a CCR10-dependent manner, while abnormal lymphatic vessel patterning in CCR10-deficient mice confirmed the significant role of CCR10 in lymphatic patterning. In vivo analyses showed that LECs are recruited to a CCL27 or CCL28 source, while VEGFD was required in combination with these chemokines to enable formation of coherent lymphatic vessels. Moreover, tumor xenograft experiments demonstrated that even though CCL27 expression by tumors enhanced LEC recruitment, the ability to metastasize was dependent on the expression of VEGFD. These studies demonstrate that CCL27 and CCL28 signaling through CCR10 may cooperate with inflammatory mediators and VEGFD during tumor lymphangiogenesis. SIGNIFICANCE: The study shows that the remodeling of lymphatic vessels in cancer is influenced by CCL27 and CCL28 chemokines, which may provide a future target to modulate metastatic spread.


Asunto(s)
Movimiento Celular , Quimiocinas CC/metabolismo , Células Endoteliales/citología , Vasos Linfáticos/citología , Transducción de Señal , Animales , Femenino , Humanos , Ligandos , Linfangiogénesis , Metástasis Linfática , Ratones , Ratones Endogámicos NOD , Ratones SCID
7.
Curr Opin Immunol ; 53: 64-73, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29698919

RESUMEN

While the link between the lymphatic system and the metastatic spread of cancer is centuries old, understanding of the underlying mechanisms is still evolving. Lymphatic vessels provide a route for tumour cells to reach regional lymph nodes (LNs), which is prognostic of distant organ metastasis and poor survival. However, genomic analyses of metastatic cancer now reveal complex patterns of dissemination. The lymphatic endothelial cells lining lymphatics respond to molecular cues from the tumour microenvironment, mediating growth and remodelling of lymphatic vessels at the primary tumour, draining LNs and distant premetastatic niches. Recent studies emphasise that this not only supports metastasis but also influences antitumour immunity. Understanding the complex interactions between tumour cells, the immune system and lymphatics will be essential to inform developing therapeutic and prognostic approaches to cancer.


Asunto(s)
Sistema Inmunológico , Vasos Linfáticos/inmunología , Metástasis de la Neoplasia , Neoplasias/inmunología , Animales , Humanos , Inmunidad , Invasividad Neoplásica , Microambiente Tumoral , Remodelación Vascular
8.
Sci Signal ; 10(499)2017 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-28974649

RESUMEN

Lymphatic vessels constitute a specialized vasculature that is involved in development, cancer, obesity, and immune regulation. The migration of lymphatic endothelial cells (LECs) is critical for vessel growth (lymphangiogenesis) and vessel remodeling, processes that modify the lymphatic network in response to developmental or pathological demands. Using the publicly accessible results of our genome-wide siRNA screen, we characterized the migratome of primary human LECs and identified individual genes and signaling pathways that regulate LEC migration. We compared our data set with mRNA differential expression data from endothelial and stromal cells derived from two in vivo models of lymphatic vessel remodeling, viral infection and contact hypersensitivity-induced inflammation, which identified genes selectively involved in regulating LEC migration and remodeling. We also characterized the top candidates in the LEC migratome in primary blood vascular endothelial cells to identify genes with functions common to lymphatic and blood vascular endothelium. On the basis of these analyses, we showed that LGALS1, which encodes the glycan-binding protein Galectin-1, promoted lymphatic vascular growth in vitro and in vivo and contributed to maintenance of the lymphatic endothelial phenotype. Our results provide insight into the signaling networks that control lymphangiogenesis and lymphatic remodeling and potentially identify therapeutic targets and biomarkers in disease specific to lymphatic or blood vessels.


Asunto(s)
Movimiento Celular/fisiología , Células Endoteliales/metabolismo , Transducción de Señal/fisiología , Células Endoteliales/citología , Galectina 1/genética , Galectina 1/metabolismo , Estudio de Asociación del Genoma Completo , Humanos
9.
Assay Drug Dev Technol ; 15(1): 30-43, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28092460

RESUMEN

The lymphatic system is a series of vessels that transport cells and excess fluid from tissues to the blood vascular system. Normally quiescent, the lymphatics can grow or remodel in response to developmental, immunological, or cells pathological stimuli. Lymphatic vessels comprise lymphatic endothelial cells (LECs) that can respond to external growth factors by undergoing proliferation, migration, adhesion, and tube and lumen formation into new vessel structures, a process known as lymphangiogenesis. To understand the key gene and signaling pathways necessary for lymphangiogenesis and lymphatic vessel remodeling, we have developed a three-dimensional LEC tube formation assay to explore the role of kinase signaling in these processes. The collagen-overlay-based assay was used with primary human adult dermal LECs to investigate a library of 60 tyrosine kinase (TK) and TK-like genes by siRNA knockdown. Nine candidate genes were identified and characterized for their ability to modify key parameters of lymphatic tube formation, including tube length, area, thickness, branching, and number of blind-ended sacs. Four genes-ZAP70, IRAK4, RIPK1, and RIPK2-were identified as high-confidence hits after tertiary deconvolution screens and demonstrate the utility of the assay to define LEC genes critical for the formation of tube structures. This assay facilitates the identification of potential molecular targets for novel drugs designed to modulate the remodeling of lymphatics that is important for the metastatic spread of cancer and other pathologies.


Asunto(s)
Células Endoteliales/fisiología , Linfangiogénesis/fisiología , Vasos Linfáticos/citología , Vasos Linfáticos/fisiología , Proteína Serina-Treonina Quinasas de Interacción con Receptores/biosíntesis , Proteína Serina-Treonina Quinasas de Interacción con Receptores/genética , Técnicas de Cultivo de Célula , Células Endoteliales/química , Células Endoteliales de la Vena Umbilical Humana/química , Células Endoteliales de la Vena Umbilical Humana/fisiología , Humanos , Vasos Linfáticos/química , ARN Interferente Pequeño/fisiología , Proteína Serina-Treonina Quinasas de Interacción con Receptores/análisis
10.
Front Immunol ; 7: 621, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-28066431

RESUMEN

Recently developed cancer immunotherapy approaches including immune checkpoint inhibitors and chimeric antigen receptor T cell transfer are showing promising results both in trials and in clinical practice. These approaches reflect increasing recognition of the crucial role of the tumor microenvironment in cancer development and progression. Cancer cells do not act alone, but develop a complex relationship with the environment in which they reside. The host immune response to tumors is critical to the success of immunotherapy; however, the determinants of this response are incompletely understood. The immune cell infiltrate in tumors varies widely in density, composition, and clinical significance. The tumor vasculature is a key component of the microenvironment that can influence tumor behavior and treatment response and can be targeted through the use of antiangiogenic drugs. Blood vascular and lymphatic endothelial cells have important roles in the trafficking of immune cells, controlling the microenvironment, and modulating the immune response. Improving access to the tumor through vascular alteration with antiangiogenic drugs may prove an effective combinatorial strategy with immunotherapy approaches and might be applicable to many tumor types. In this review, we briefly discuss the host's immune response to cancer and the treatment strategies utilizing this response, before focusing on the pathological features of tumor blood and lymphatic vessels and the contribution these might make to tumor immune evasion.

11.
PLoS One ; 9(11): e112106, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25420155

RESUMEN

Eph and ephrin proteins are essential cell guidance cues that orchestrate cell navigation and control cell-cell interactions during developmental tissue patterning, organogenesis and vasculogenesis. They have been extensively studied in animal models of embryogenesis and adult tissue regeneration, but less is known about their expression and function during human tissue and organ regeneration. We discovered the hypoxia inducible factor (HIF)-1α-controlled expression of EphA3, an Eph family member with critical functions during human tumour progression, in the vascularised tissue of regenerating human endometrium and on isolated human endometrial multipotent mesenchymal stromal cells (eMSCs), but not in other highly vascularised human organs. EphA3 affinity-isolation from human biopsy tissue yielded multipotent CD29+/CD73+/CD90+/CD146+ eMSCs that can be clonally propagated and respond to EphA3 agonists with EphA3 phosphorylation, cell contraction, cell-cell segregation and directed cell migration. EphA3 silencing significantly inhibited the ability of transplanted eMSCs to support neovascularisation in immunocompromised mice. In accord with established roles of Eph receptors in mediating interactions between endothelial and perivascular stromal cells during mouse development, our findings suggest that HIF-1α-controlled expression of EphA3 on human MSCs functions during the hypoxia-initiated early stages of adult blood vessel formation.


Asunto(s)
Células Madre Mesenquimatosas/metabolismo , Células Madre Multipotentes/metabolismo , Neovascularización Fisiológica , Receptor EphA3/genética , Adulto , Animales , Western Blotting , Hipoxia de la Célula , Células Cultivadas , Endometrio/citología , Femenino , Expresión Génica , Xenoinjertos/irrigación sanguínea , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Masculino , Trasplante de Células Madre Mesenquimatosas/métodos , Ratones Endogámicos BALB C , Ratones Desnudos , Microscopía Fluorescente , Células Madre Multipotentes/trasplante , Interferencia de ARN , Receptor EphA3/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Trasplante Heterólogo , Adulto Joven
12.
Growth Factors ; 32(6): 176-89, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25391995

RESUMEN

Eph receptor tyrosine kinases control cell-cell interactions during normal and oncogenic development, and are implicated in a range of processes including angiogenesis, stem cell maintenance and metastasis. They are thus of great interest as targets for cancer therapy. EphA3, originally isolated from leukemic and melanoma cells, is presently one of the most promising therapeutic targets, with multiple tumor-promoting roles in a variety of cancer types. This review focuses on EphA3, its functions in controlling cellular behavior, both in normal and pathological development, and most particularly in cancer.


Asunto(s)
Neoplasias/metabolismo , Receptores de la Familia Eph/metabolismo , Animales , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Humanos , Neoplasias/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Receptores de la Familia Eph/antagonistas & inhibidores , Receptores de la Familia Eph/química , Receptores de la Familia Eph/genética
13.
Clin Exp Metastasis ; 30(6): 819-32, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23591595

RESUMEN

Metastasis to regional lymph nodes is an important and early event in many tumors. Vascular endothelial growth factor-C (VEGF-C), VEGF-D and their receptor VEGFR-3, play a role in tumor spread via the lymphatics, although the timing of their involvement is not understood. In contrast, VEGFR-2, activated by VEGF-A, VEGF-C and VEGF-D, is a mediator of angiogenesis and drives primary tumor growth. We demonstrate the critical role for VEGFR-3, but not VEGFR-2, in the early events of metastasis. In a tumor model exhibiting both VEGF-D-dependent angiogenesis and lymphangiogenesis, an antibody to VEGFR-2 (DC101) was capable of inhibiting angiogenesis (79 % reduction in PECAM + blood vessels) and growth (93 % reduction in tumor volume). However, unlike an anti-VEGFR-3 Mab (mF4-31C1), DC101 was not capable of eliminating either tumor lymphangiogenesis or lymphogenous metastasis (60 % reduction of lymph node metastasis by DC101 vs 95 % by mF4-31C1). Early excision of the primary tumors demonstrated that VEGF-D-mediated tumor spread precedes angiogenesis-induced growth. Small but highly metastatic primary human breast cancers had significantly higher lymphatic vessel density (23.1 vessels/mm(2)) than size-matched (11.7) or larger non-metastatic tumors (12.4) thus supporting the importance of lymphatic vessels, as opposed to angiogenesis-mediated primary tumor growth, for nodal metastasis. These results suggest that lymphangiogenesis via VEGF-D is more critical than angiogenesis for nodal metastasis.


Asunto(s)
Linfangiogénesis/fisiología , Transducción de Señal/fisiología , Receptor 3 de Factores de Crecimiento Endotelial Vascular/fisiología , Animales , Línea Celular Tumoral , Femenino , Humanos , Metástasis Linfática , Vasos Linfáticos/patología , Ratones , Ratones SCID , Neovascularización Fisiológica , Factor D de Crecimiento Endotelial Vascular/fisiología , Receptor 2 de Factores de Crecimiento Endotelial Vascular/fisiología
14.
Cancer Cell ; 21(2): 181-95, 2012 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-22340592

RESUMEN

Lymphatic metastasis is facilitated by lymphangiogenic growth factors VEGF-C and VEGF-D that are secreted by some primary tumors. We identified regulation of PGDH, the key enzyme in prostaglandin catabolism, in endothelial cells of collecting lymphatics, as a key molecular change during VEGF-D-driven tumor spread. The VEGF-D-dependent regulation of the prostaglandin pathway was supported by the finding that collecting lymphatic vessel dilation and subsequent metastasis were affected by nonsteroidal anti-inflammatory drugs (NSAIDs), known inhibitors of prostaglandin synthesis. Our data suggest a control point for cancer metastasis within the collecting lymphatic endothelium, which links VEGF-D/VEGFR-2/VEGFR-3 and the prostaglandin pathways. Collecting lymphatics therefore play an active and important role in metastasis and may provide a therapeutic target to restrict tumor spread.


Asunto(s)
Transformación Celular Neoplásica , Endotelio Linfático/metabolismo , Metástasis Linfática/fisiopatología , Prostaglandinas/metabolismo , Factor D de Crecimiento Endotelial Vascular/fisiología , Animales , Antiinflamatorios/farmacología , Endotelio Linfático/patología , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Linfangiogénesis/efectos de los fármacos , Metástasis Linfática/genética , Sistema Linfático/efectos de los fármacos , Sistema Linfático/patología , Vasos Linfáticos/metabolismo , Vasos Linfáticos/patología , Ratones , Ratones Endogámicos NOD , Ratones SCID , Factor D de Crecimiento Endotelial Vascular/genética , Factor D de Crecimiento Endotelial Vascular/metabolismo , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo , Receptor 3 de Factores de Crecimiento Endotelial Vascular/metabolismo
15.
Cancer Res ; 71(20): 6547-57, 2011 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-21868759

RESUMEN

Lymph node metastasis, an early and prognostically important event in the progression of many human cancers, is associated with expression of VEGF-D. Changes to lymph node vasculature that occur during malignant progression may create a metastatic niche capable of attracting and supporting tumor cells. In this study, we sought to characterize molecules expressed in lymph node endothelium that could represent therapeutic or prognostic targets. Differential mRNA expression profiling of endothelial cells from lymph nodes that drained metastatic or nonmetastatic primary tumors revealed genes associated with tumor progression, in particular bone morphogenetic protein-4 (BMP-4). Metastasis driven by VEGF-D was associated with reduced BMP-4 expression in high endothelial venules, where BMP-4 loss could remodel the typical high-walled phenotype to thin-walled vessels. VEGF-D expression was sufficient to suppress proliferation of the more typical BMP-4-expressing high endothelial venules in favor of remodeled vessels, and mechanistic studies indicated that VEGF receptor-2 contributed to high endothelial venule proliferation and remodeling. BMP-4 could regulate high endothelial venule phenotype and cellular function, thereby determining morphology and proliferation responses. Notably, therapeutic administration of BMP-4 suppressed primary tumor growth, acting both at the level of tumor cells and tumor stromal cells. Together, our results show that VEGF-D-driven metastasis induces vascular remodeling in lymph nodes. Furthermore, they implicate BMP-4 as a negative regulator of this process, suggesting its potential utility as a prognostic marker or antitumor agent.


Asunto(s)
Proteína Morfogenética Ósea 4/metabolismo , Ganglios Linfáticos/irrigación sanguínea , Ganglios Linfáticos/patología , Neovascularización Patológica/metabolismo , Factor D de Crecimiento Endotelial Vascular/metabolismo , Animales , Proteína Morfogenética Ósea 4/uso terapéutico , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Ganglios Linfáticos/efectos de los fármacos , Metástasis Linfática , Ratones , Ratones Endogámicos NOD , Ratones SCID , Neovascularización Patológica/tratamiento farmacológico , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo
16.
Novartis Found Symp ; 281: 38-43; discussion 44-53, 208-9, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17534064

RESUMEN

The lymphatic network functions to return fluid, cells and macromolecules to the circulation. Recent characterization of growth factors that control the growth and development of the lymphatics, and markers which specify lymphatic endothelial cells have enhanced our understanding of this system. Members of the VEGF family of factors are key regulators of these vessels with VEGF-C/VEGF-D and VEGFR-3 being the best validated signalling pathways in lymphangiogenesis. The study of these molecules in various pathologies has shown that they are important in the processes of cancer metastasis and in the formation of lymphoedema. Knowledge of these molecular pathways allows for the generation of modulators of these pathways which could form the basis of novel therapeutic approaches.


Asunto(s)
Linfangiogénesis/fisiología , Neoplasias/metabolismo , Transducción de Señal/fisiología , Factores de Crecimiento Endotelial Vascular/metabolismo , Humanos , Linfangiogénesis/genética , Transducción de Señal/genética
17.
Pulm Pharmacol Ther ; 19(1): 51-60, 2006.
Artículo en Inglés | MEDLINE | ID: mdl-16286238

RESUMEN

Endothelial cells line the vessels which transport fluid and cells throughout the body. Although much attention has been paid to these cells in the context of the blood vascular system, endothelial cells also line lymphatic vessels. Recent progress in identifying growth factors which drive the development of lymphatic vessels and molecular markers specific for lymphatics has expanded our understanding of the role the lymphatic system plays in human pathology. Techniques for purifying populations of lymphatic endothelial cells also allow the in vitro analysis of this unique surface to explore its role in tumour metastasis, immune cell function and fluid transport. This review provides a synopsis of the recent data pertaining to the purification and culture of lymphatic endothelial cells, and the interaction of tumour cells with lymphatic endothelium.


Asunto(s)
Endotelio Linfático/metabolismo , Células Neoplásicas Circulantes/metabolismo , Animales , Unión Competitiva , Endotelio Linfático/patología , Humanos , Modelos Biológicos , Células Neoplásicas Circulantes/patología , Receptores de Factores de Crecimiento Endotelial Vascular/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...