Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 855: 158857, 2023 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-36126711

RESUMEN

Biofilms serve to house diverse microbial communities, which are responsible for the majority of wastewater constituent degradation and transformation in treatment wetlands (TWs). TW biofilm has been generally conceptualized as a relatively uniform film covering available surfaces. However, no studies attaining direct visual 3D representations of biofilm morphology have been conducted. This study focuses on imaging the morphology of detached, gravel-associated, and rhizospheric (Phalaris arundinacea) biofilms from subsurface TW mesocosms. Images obtained through both traditional light microscopy, environmental scanning electron microscopy (E-SEM) and Wet-SEM revealed that TW biofilms are structurally heterogeneous ranging from corrugated films to clusters of aggregates. Features such as water channels and pores were observed suggesting that pollutant transport inside biofilms is complex, and that the interfacial surface area between water and biofilm is much larger than previously understood. Biofilm thickness generally ranged between 170 and 240 µm, with internal biofilm porosities estimated as 34 ± 10 %, reaching a maximum of 50 %. Internal biofilm matrix pore diameters ranged from 1 to 205.2 µm, with a distribution that favored pores and channels smaller than 10 µm, and a mean equivalent spherical diameter of 8.6 µm. Based on the large variation in pore and channel sizes it is expected that a variety of flow regimes and therefore pollutant dynamics are likely to occur inside TW biofilm matrices. Based on the visual evidence and analysis, a new conceptual model was created to reflect the microscale TW biofilm dynamics and morphology. This new conceptual model will serve to inform future biokinetic modelling, microscale hydrology, microbial community assessment, and pollutant treatment studies.


Asunto(s)
Contaminantes Ambientales , Humedales , Matriz Extracelular de Sustancias Poliméricas , Aguas Residuales , Biopelículas
2.
Sci Total Environ ; 806(Pt 3): 151248, 2022 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-34715213

RESUMEN

Silver nanomaterials (Ag NMs) have been used in a variety of commercial products to take advantage of their antimicrobial properties. However, there are concerns that these AgNMs can be released during/after use and enter wastewater streams, potentially impacting aquatic systems or accumulating in wastewater biosolids. Biosolids, which are a residual of wastewater treatment processes, have been found to contain AgNMs and are frequently used as agricultural fertilizer. Since the function of soil microbial communities is imperative to nutrient cycling and agricultural productivity, it is important to characterize and assess the effects that silver nanomaterials could have in agricultural soils. In this study agricultural soil was amended with pristine engineered (PVP-coated or uncoated AgNMs), aged silver (sulphidized or released from textiles) nanomaterials, and ionic silver to determine the fate and toxicity over the course of three months. Exposures were carried out at various environmentally relevant concentrations (1 and 10 mg Ag/kg soil) representing between 30 to over 800 years of equivalent biosolid loadings. Over thirteen different methodologies and measures were used throughout this study to assess for potential effects of the silver nanomaterials on soil, including microbial community composition, average well colour development (AWCD) and enzymatic activity. Overall, the AgNM exposures did not exhibit significant toxic effects to the soil microbial communities in terms of density, activity, function and diversity. However, the positive ionic silver treatment (100 mg Ag/kg soil) resulted in suppression to microbial activity while also resulting in significantly higher populations of Frankia alni (nitrogen-fixer) and Arenimonas malthae (phytopathogen) as compared to the negative control (p < 0.05, Tukey HSD) which warrants further investigation.


Asunto(s)
Nanopartículas del Metal , Microbiota , Nanoestructuras , Contaminantes del Suelo , Nanopartículas del Metal/toxicidad , Nanoestructuras/toxicidad , Plata/toxicidad , Suelo , Contaminantes del Suelo/análisis , Contaminantes del Suelo/toxicidad , Textiles
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA