Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Arch Pharm (Weinheim) ; : e2400057, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38775630

RESUMEN

Quinazoline and quinazolinone derivatives piqued medicinal chemistry interest in developing novel drug candidates owing to their pharmacological potential. They are important chemicals for the synthesis of a variety of physiologically significant and pharmacologically useful molecules. Quinazoline and quinazolinone derivatives have anticancer, anti-inflammatory, antidiabetic, anticonvulsant, antiviral, and antimicrobial potential. The increased understanding of quinazoline and quinazolinone derivatives in biological activities provides opportunities for new medicinal products. The present review focuses on novel advances in the synthesis of these important scaffolds and other medicinal aspects involving drug design, structure-activity relationship, and action mechanisms of quinazoline and quinazolinone derivatives to help in the development of new quinazoline and quinazolinone derivatives.

2.
Int J Environ Health Res ; : 1-13, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38695857

RESUMEN

In the current study, we evaluated the antimicrobial activity of Cinnamomum zeylanicum Blume essential oil (Cinn-EO) against a group of thirteen clinical colistin-resistant Gram-negative bacteria, including Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa. The GCMS analysis showed that cinnamaldehyde was the major compound (94.29%) of the Cinn-EO. The diameter of the inhibition zone by Cinn-EO varied from 24 to 37 mm. The minimum inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) values ranged between 0.625 and 5 mg/mL. Interestingly, the MBC/MIC was equal to 1 for most tested bacterial strains, indicating an advanced bactericidal effect of Cinn-EO against colistin-resistant Gram-negative bacteria. The absorption, distribution, metabolism, elimination, and toxicity (ADMET) prediction showed good pharmacokinetic properties of the tested cinnamaldehyde. The results suggest that cinnamaldehyde could be a potential alternative to treat infection caused by colistin-resistant Gram-negative bacteria.

3.
Heliyon ; 10(6): e27737, 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38509881

RESUMEN

Latest studies indicated that agro-food wastes are considered renewable sources of bioactive compounds. This investigation aimed to utilize natural extracts of citrus peels as antimicrobial and anti-aflatoxigenic agents for food safety. The bioactivity of two citrus peels was assessed by total phenolic, flavonoids, and antioxidant activity. Nanoemulsions were manufactured using high-speed homogenization. The mean particle size of the nanoemulsions ranged from 29.41 to 66.41 nm with a polydispersity index of 0.11-0.16. The zeta potential values ranged from -14.27 to -26.74 mV, indicating stability between 81.44% and 99.26%. The orange peel extract showed the highest contents of total phenolic and flavonoids compared to the other extracts and nanoemulsions (39.54 mg GAE/g and 79.54 mg CE/100 g, respectively), which agreed with its potential antioxidant activity performed by DPPH free radical-scavenging and ABTS assays. Chlorogenic, caffeic, ferulic, and catechin were the dominant phenolic acids in the extracts and nanoemulsions, while quercitrin, rutin, and hesperidin were the most abundant flavonoids. Limonene was the major volatile component in both oils; however, it was reduced dramatically from 92.52% to 76.62% in orange peel oil and from 91.79 to 79.12% in tangerine peel oil. Consistent with the differences in phenolics, flavonoids, and volatiles between orange and tangerine peel extracts, the antibacterial properties of orange extracts had more potential than tangerine ones. Gram-positive bacteria were more affected by all the examined extracts than Gram-negative ones. The antifungal activity of orange extract and nanoemulsion on seven fungal strains from Aspergillus spp had more potential than tangerine extracts. Additionally, using a simulated media, the orange peel extract and its nanoemulsion had a more anti-aflatoxigenic influence. Molecular docking confirmed the high inhibitory action of flavonoids, especially hesperidin, on the polyketide synthase (-9.3 kcal/mol) and cytochrome P450 monooxygenase (-10.1 kcal/mol) key enzymes of the aflatoxin biosynthetic mechanism.

4.
Heliyon ; 9(12): e22995, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38076155

RESUMEN

The excessive production of food and agro-waste has become a significant problem for society, the economy, and the environment. To meet the growing demand for food free from harmful synthetic insecticides, a recent study has investigated the potential use of an ethanolic extract obtained from the straw of Nigella sativa L., a byproduct of seed collection, as a bioinsecticide. The study also evaluated its in-vitro and in-silico acetylcholinesterase (AChE) inhibitory potential against the Agrotis ipsilon (Hufnagel) moth species, which is known to cause damage to various crops and ornamental plants. The high-performance liquid chromatography examination revealed that the ethanolic N. sativa straw extract contained 18 phenolics, including 3 simple phenols, 8 phenolic acids, and 7 flavonoids. Catechol (330.14 µg/ml), chlorogenic (169.23 µg/ml), and gallic (110.93 µg/ml) acids were the predominant phenolics. On the other hand, catechin (94.07 µg/ml), naringenin (91.99 µg/ml), and rutin (78.16 µg/ml) were the major flavonoids identified in the extract. The insecticidal activity of the extract against the 4th larval instar of A. ipsilon was evaluated using four concentrations (1.25-10 %). The study found that higher extract concentrations led to increased mortality in the larvae. Specifically, the concentration of 10 % resulted in the highest mortality rate of 96.67 %. Lower concentrations of 5 %, 2.5 %, and 1.25 % resulted in mortality rates of 51.11 %, 18.89 %, and 9.17 %, respectively. The extract also showed higher activity against AChE in larval tissue, with an inhibition percentage of 65.2 % after 24 h of treatment. Docking experiments confirmed that ellagic acid and apigenin had higher binding affinity than the control (lanate). These results demonstrate the potential of utilizing agricultural waste like N. sativa straw to create innovative and sustainable bioinsecticides.

5.
J Biomol Struct Dyn ; : 1-14, 2023 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-38153371

RESUMEN

NSAIDs represent a mainstay in pain and inflammation suppression, and their actions are mainly based on inhibiting COX-1 and COX-2 enzymes.Due to the adverse effects of these drugs, especially on the stomach and heart, scientists efforts have been directed to manufacture selective COX-2 without cardiovascular side effects and with minimal effects on the stomach. The cardiovascular side effects are thought to be related to the chemical composition rather than mechanism of action of these drugs.Novel pyridopyrimidines, 9a-j, were prepared and their chemical structures were confirmed by NMR, mass and IR Spectra, and elemental analysis. The effect of the 9a-j compounds on COX-1 and COX-2 was assessed and it was found that 2-hydrazino-5-(4-methoxyphenyl)-7-phenyl-3H-pyrido[2,3-d)pyrimidin-4-one (9d) was the most potent COX-2 inhibitor (IC50 = 0.54 uM) compared to celecoxib (IC50 = 1.11 uM) with selectivity indices of 6.56 and 5.12, respectively.The in vivo inhibition of paw edema of novel compounds 9a-j was measured using carrageenan-induced paw edema method, and that 2-hydrazino-5-(4-methoxyphenyl)-7-phenyl-3H-pyrido[2,3-d)pyrimidin-4-one (9d) showed the best inhibitory activity in comparison with the other compounds and celecoxib.The gastroprotective effect of the potent derivatives 9d, 9e, 9f, 9 g and 9h was investigated. 2-Hydrazino-5-(4-methoxyphenyl)-7-phenyl-3H-pyrido[2,3-d)pyrimidin-4-one (9d) and 7-(chlorophenyl)-hydrazino-5-(4-methoxyphenyl)-3H-pyrido[2,3-d)pyrimidin-4-one (9e) showed ulcer indices comparable to celecoxib (1 and 0.5 vs 0.5, respectively). Docking studies were carried out and they confirmed the mechanistic action of the designed compoundsCommunicated by Ramaswamy H. Sarma.

6.
Molecules ; 28(20)2023 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-37894504

RESUMEN

Essential oils are naturally occurring multicomponent combinations of isoprenoids with distinctive odors that are produced by aromatic plants from mevalonic acid. They are extensively applied in aromatherapy for the treatment of various ailments. To investigate the potential therapeutic value of the ingredients in Launaea mucronata essential oil (EO), gas chromatography-mass spectrometry (GC-MS) analysis was used for essential oil characterization. Then, 2,2-diphenyl-1-picrylhydrazyl (DPPH), ß-carotene/linoleic acid, and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) assays were used to evaluate the antioxidants. A 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay was used to estimate the cytotoxicity. Following a thorough analysis of the GC-MS chromatogram, 87 components representing 97.98% of the entire EO mixture were identified. N-eicosane (10.92%), 2E,6Z-farnesol (10.74%), and 2Z,6E-farnesyl acetone (46.35%) were determined to be the major components of the oil. When the produced EO was evaluated for its antioxidant properties, it showed a strong inhibitory effect (%) of 65.34 at a concentration of 80 µg/mL. The results (g/mL) showed a positive response against the tested cell lines for HCT-116, MCF-7, and HepG2 (8.45, 10.24, and 6.78 g/mL, respectively). A high-concentration mixture of deadly components consisting of farnesol, bisabolol, eicosane, and farnesyl acetone may be responsible for this significant cytotoxic action, which was especially noticeable in the HepG2 cell line. Molecular docking occurred between farnesol and farnesyl acetone with the target residues of topoisomerases I and II, CDK4/cyclD1, and Aurora B kinases; these showed binding free energies ranging from -4.5 to -7.4 kcal/mol, thus demonstrating their antiproliferative action. In addition, farnesol and farnesyl acetone fulfilled most of the ADME and drug-likeness properties, indicating their activity.


Asunto(s)
Antineoplásicos , Asteraceae , Aceites Volátiles , Aceites Volátiles/farmacología , Aceites Volátiles/química , Antioxidantes/farmacología , Antioxidantes/química , Farnesol , Arabia Saudita , Acetona , Simulación del Acoplamiento Molecular , Línea Celular Tumoral , Antineoplásicos/farmacología , Asteraceae/química
7.
Food Funct ; 14(19): 8814-8828, 2023 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-37681580

RESUMEN

Flavors and aromas are widely used in food and pharmaceutical industries to enhance food palatability. However, it is worth noting that they may also have bioactivity. This study aims to examine the potential impact of key flavors and their nanocapsules on health and diseases, such as type 2 diabetes mellitus (T2DM). The 36 nanocapsules of key flavorings were prepared by high shear homogenization (HSH). Seventy-two male Sprague-Dawley rats received a single dosage of streptozotocin (35 mg kg-1 body weight) intraperitoneally. All of the nutritional and biochemical parameters were statistically analyzed. A virtual docking study was conducted. Linalool nanoemulsion results showed the highest encapsulation efficiency (86.76%), while isoamyl acetate nanoparticles showed the lowest (69.99%). According to GC-MS analysis, encapsulation did not affect the flavoring structure with particle size distributions ranging from 277.3 to 628.8 nm. Using TEM, nanoemulsion particles appeared spherical with a desired nanometric diameter size. In the oral glucose tolerance test, flavorings in oil and nanoforms had no discernible hypoglycemia effects in normal rats. The nutritional and biochemical parameters confirmed that both normal and nanoencapsulation forms demonstrated a potential anti-hyperglycemic effect, and enhanced the rat health compared to the raw flavorings. The studied flavorings and their nanocapsules seem to have the potential double effect of a flavor compound as a food palatability enhancer with a potential beneficial effect on type 2 diabetes mellitus without any health drawbacks.


Asunto(s)
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Nanocápsulas , Ratas , Masculino , Animales , Nanocápsulas/química , Estreptozocina , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Experimental/tratamiento farmacológico , Ratas Sprague-Dawley
8.
Food Chem Toxicol ; 178: 113923, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37399938

RESUMEN

Diacetyl is a common ingredient that creates a buttery flavor in baked goods and other food products. The cytotoxic impact of diacetyl on a normal human liver cell line (THLE2) indicated an IC50 value of 41.29 mg/ml through MTT assay and a cell cycle arrest in the G0/G1 phase relative to the control. Administration of diacetyl at two-time points (acute-chronic) led to a significant increase in DNA damage indicated by the increase in tail length, tail DNA%, and tail moment. The mRNA and protein expression levels of genes in the rats' livers were then measured using real-time PCR and western blotting. The results showed an activation of the apoptotic and necrosis mechanism, with an upregulation of p53, Caspase 3, and RIP1 and a downregulation of Bcl-2 at the mRNA level. The ingestion of diacetyl disrupted the liver's oxidant/antioxidant balance, as evidenced by alterations in levels of GSH, SOD, CAT, GPx, GR, MDA, NO, and peroxynitrite. Additionally, heightened levels of inflammatory cytokines were shown. Histopathological examinations revealed necrotic foci and congested portal areas in the rats' liver cells after treatment with diacetyl. Diacetyl may interact moderately with Caspase, RIP1, and p53 core domain through In-silico, possibly resulting in upregulated gene expression.


Asunto(s)
Diacetil , Proteína p53 Supresora de Tumor , Ratas , Humanos , Animales , Diacetil/análisis , Proteína p53 Supresora de Tumor/genética , Aditivos Alimentarios , Daño del ADN , ARN Mensajero/metabolismo , Apoptosis
9.
Molecules ; 28(14)2023 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-37513240

RESUMEN

Medicinal plant extracts are a promising source of bioactive minor contents. The present study aimed to evaluate the distinguished volatile content of Algerian Cymbopogon citratus (DC.) Stapf before and after the microfluidization process and their related antimicrobial and anti-mycotoxigenic impacts and changes. The GC-MS apparatus was utilized for a comparative examination of Algerian lemongrass essential oil (LGEO) with its microfluidization nanoemulsion (MF-LGEO) volatile content. The MF-LGEO was characterized using Zetasizer and an electron microscope. Cytotoxicity, antibacterial, and antifungal activities were determined for the LGEO and MF-LGEO. The result reflected changes in the content of volatiles for the MF-LGEO. The microfluidizing process enhanced the presence of compounds known for their exceptional antifungal and antibacterial properties in MF-LGEO, namely, neral, geranial, and carvacrol. However, certain terpenes, such as camphor and citronellal, were absent, while decanal, not found in the raw LGEO, was detected. The droplet diameter was 20.76 ± 0.36 nm, and the polydispersity index (PDI) was 0.179 ± 0.03. In cytotoxicity studies, LGEO showed higher activity against the HepG2 cell line than MF-LGEO. Antibacterial LGEO activity against Gram-positive bacteria recorded an inhibitory zone from 41.82 ± 2.84 mm to 58.74 ± 2.64 mm, while the zone ranged from 12.71 ± 1.38 mm to 16.54 ± 1.42 mm for Gram-negative bacteria. Antibacterial activity was enhanced to be up to 71.43 ± 2.54 nm and 31.54 ± 1.01 nm for MF-LGEO impact against Gram-positive and Gram-negative pathogens. The antifungal effect was considerable, particularly against Fusarium fungi. It reached 17.56 ± 1.01 mm and 13.04 ± 1.37 mm for LGEO and MF-LGEO application of a well-diffusion assay, respectively. The MF-LGEO was more promising in reducing mycotoxin production in simulated fungal growth media due to the changes linked to essential compounds content. The reduction ratio was 54.3% and 74.57% for total aflatoxins (AFs) and ochratoxin A (OCA) contents, respectively. These results reflect the microfluidizing improvement impact regarding the LGEO antibacterial, antifungal and anti-mycotoxigenic properties.


Asunto(s)
Antiinfecciosos , Cymbopogon , Aceites Volátiles , Antifúngicos/farmacología , Antiinfecciosos/farmacología , Aceites Volátiles/farmacología , Antibacterianos/farmacología
10.
Toxins (Basel) ; 15(3)2023 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-36977116

RESUMEN

Aflatoxin, is a naturally occurring polyketide generated by Aspergillus flavus via biosynthetic pathways, including polyketide synthase (PKS) and non-ribosomal enzymes. The in vitro analysis supported by molecular dynamics (MD) techniques was used to examine the antifungal and anti-aflatoxigenic activity of spent coffee grounds (SCGs) methanol extract. The High-Performance Liquid Chromatography results revealed the presence of 15 phenolic acids and five flavonoids. (R)-(+)-Rosmarinic acid (176.43 ± 2.41 µg/g) was the predominant of the detected acids, followed by gallic acid (34.83 ± 1.05 µg/g). At the same time, apigenin-7-glucoside is the dominant flavonoid in the SCGs extract by 1717.05 ± 5.76 µg/g, and naringin (97.27 ± 1.97 µg/g) comes next. The antifungal and anti-aflatoxigenic activity of the SCGs extracts was 380 µL/mL and 460 µL/mL, respectively. The SGGs' effect of inhibiting five Aspergillus strains' growth on the agar media ranged between 12.81 ± 1.71 to 15.64 ± 1.08 mm by two diffusion assays. Molecular docking results confirmed the inhibitory action of different phenolics and flavonoids on the PKS and NPS key enzymes of the aflatoxin biosynthetic mechanism. The SCGs extract components with the highest free binding energy, naringin (-9.1 kcal/mL) and apigenin 7-glucoside (-9.1 kcal/mol), were subjected to an MD simulation study. The computational results infer the stabilizing effects on the enzymes upon ligand binding led to the impairment in its functionality. The current study represents a novel attempt to assess the anti aflatoxins mechanism of phenolics and flavonoids targeting PKS and NPS via computational approaches compared to in-vitro assays.


Asunto(s)
Aflatoxinas , Café , Antifúngicos/química , Simulación del Acoplamiento Molecular , Aspergillus flavus/metabolismo , Fenoles/farmacología , Flavonoides/farmacología , Extractos Vegetales/farmacología
11.
Antibiotics (Basel) ; 11(10)2022 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-36289975

RESUMEN

In the context of the globally growing problem of resistance to most used antibacterial agents, essential oils offer promising solutions against multidrug-resistant (MDR) bacterial pathogens. The present study aimed to evaluate the prevalence, etiology, and antibiotic-resistance profiles of bacteria responsible for pyogenic infections in Regional Military University Hospital of Constantine. Disc diffusion and broth microdilution (MIC) methods were used to evaluate the antimicrobial activity of essential oils from five Algerian aromatic plants growing wild in the north of Algeria-Salvia officinalis (Sage), Thymus vulgaris (Thyme), Mentha pulegium L. (Mentha), Rosmarinus officinalis (Rosemary), and Pelargonium roseum (Geranium)-against reference and MDR strains. During three months of the prospective study, 112 isolates out of 431 pus samples were identified. Staphylococcus aureus was the most predominant species (25%), followed by Klebsiella pneumoniae (21.42%), Pseudomonas aeruginosa (21%), and Escherichia coli (17.95%). Among pus isolates, 65 were MDR (58.03%). The radial streak-line assay showed that R. officinalis and M. pulegium L. had weak activity against the tested strains, whereas P. roseum showed no activity at all. Meanwhile, T. vulgaris was the most potent, with an inhibition zone of 12-26 mm and an MIC value ranging between 0.25 and 1.25%, followed by S. officinalis with an inhibition zone of 8-12 mm and an MIC value ranging between 0.62 and 2.5%. Generally, A. baumannii and S. aureus ATCC6538P were the most sensitive strains, whereas P. aeruginosa ATCC27853 was the most resistant strain to the oils. Gas chromatography-mass spectrometry analysis of chemical composition revealed the presence of borneol (76.42%) and thymol (17.69%) as predominant in thyme, whereas camphor (36.92%) and α- thujone (34.91%) were the major volatiles in sage. The in-silico study revealed that sesquiterpenes and thymol had the highest binding free energies against the vital enzymes involved in biosynthesis and repair of cell walls, proteins, and nucleic acids compared to monoterpenes. The results demonstrated that T. vulgaris and S. officinalis are ideal candidates for developing future potentially active remedies against MDR strains.

12.
Plants (Basel) ; 11(17)2022 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-36079610

RESUMEN

The modern utilization of essential oils such as ginger oil (GO) as an anti-aflatoxin represents a potential target for food preservation and safety; however, the mechanism of action is still unclear. Nanoemulsions, through an edible coating, can enhance the oil's bioactivity, increase its hydrophilicity, and extend the final product's shelf-life. In the present study, two edible films for the GO nanoemulsion were prepared by ultrasonication using carboxymethyl cellulose (FB1-GO) and sodium alginate (FB2-GO). The droplet size of FB2-GO was finer (126.54 nm) compared to FB1-GO (289.77 nm). Meanwhile, both had high stability proved by z-potential; +31.54 mV (FB1-GO) and +46.25 mV (FB2-GO) with low PDI values (<0.4). Using gas chromatography-mass spectrometry, the hydrodistilled GO showed 25 compounds, representing 99.17% of the total oil, with α-zingiberene (29.8%), geranial (10.87%), ß-bisabolene (8.19%), and ar-curcumene (5.96%) as the predominant. A dramatic increase in α-zingiberene, α-bisabolene and ar-curcumene was due to the homogenization conditions in both FB1-GO and FB2-GO compared to the GO. The FB1-GO exhibited superior antibacterial activity against the examined strains of bacterial pathogens, while FB2-GO was more effective as an antifungal agent on the tested Aspergillus fungi strains. In a simulated liquid media, FB2-GO inhibited the total growth of fungi by 84.87−92.51% and showed the highest reduction in the aflatoxin amount produced. The in silico study presented that, among the GO volatile constituents, sesquiterpenes had the highest binding free energies against the enzymes responsible for aflatoxin production compared to monoterpenes. α-Bisabolene showed the highest affinity toward polyketide synthase (−7.5 Kcal/mol), while ar-curcumene was the most potent against cytochrome P450 monooxygenase (−8.3 Kcal/mol). The above findings clarify the reasons for aflatoxin reduction in simulated media during incubation with FB1-GO and FB2-GO.

13.
Foods ; 11(15)2022 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-35954055

RESUMEN

This study aimed to produce healthy mayonnaise with a protective effect against cardiovascular diseases, containing omega-3 fatty acids (FA), using flaxseed oil (FXO), which includes a high percentage of alpha-linolenic acid (ALA, C18:3n-3). The mayonnaise was prepared by replacing soybean oil with FXO at 20, 30, and 40% levels. The effect on the organoleptic, physical, and chemical quality was studied compared to a control, prepared only with soybean oil (70%). The oxidative and microbial stability during 12 weeks of storage at 25 and 7 °C was also evaluated. The results showed that the use of FXO in mayonnaise (20, 30, and 40%) led to an increase in TUFA (from 79.37 (control) to 82.48, 85.49, and 87.66%, respectively), particularly in PUFAn-3, due to the rise of ALA (from 6.5 to 18.38, 24.02 and 37.87%, respectively) and a decrease in TSFA (from 20.63 to 17.52, 14.51 and 12.34%, respectively). The panelists did not perceive significant differences in the sensory characteristics of the "new" mayonnaise. A decrease in the oxidation rates of the "new" mayonnaise during the storage period was observed. A significant effect on microbial growth was not reported, although the permissible limits were not exceeded after 12 weeks of storage, even at 25 °C.

14.
Nanomaterials (Basel) ; 12(15)2022 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-35957062

RESUMEN

The emergence of multidrug-resistant (MDR) bacteria is a danger to public health and exposes patients to high risk, increasing morbidity and mortality worldwide. For this purpose, three months of evaluation of MDR's prevalence and antimicrobial susceptibility patterns in the military regional university hospital of Constantine from different services and samples was carried out. Among a total of 196 isolates, 35.2% were MDR. The use of essential oils such as Origanum glandulosum Desf. as an alternative to antibiotics is attractive due to their rich content of bioactive compounds conferring many biological activities. Also, to overcome the drawbacks of using oils as the hydrophobicity and negative interaction with the environmental conditions, in addition to increasing their activity, encapsulation for the oil was performed using high-speed homogenization (HSH) into nanocapsules and high-pressure homogenization (HPH) into nanoemulsion. Nine volatile constituents were determined using gas chromatography-mass spectrometry analysis (GC-MS) in hydrodistilled oil with thymol, carvacrol, p-cymene, and γ-terpinene as dominants. A dramatic decrease in the major volatile components was observed due to the use of HSH and HPH but generated the same oil profile. The mean particle size of the nanoemulsion was 54.24 nm, while that of nanocapsules was 120.60 nm. The antibacterial activity of the oil and its nanoparticles was estimated on MDR isolates using the disk diffusion, aromatogram, and broth microdilution methods. Consistent with the differences in volatile constituents, the oil exhibited a higher antibacterial activity compared to its nanoforms with the diameters of the inhibition zone against E. coli (20 mm), S. aureus (35 mm), and A. baumannii (40 mm). Both formulations have shown relatively significant activity against the biofilm state at sub-inhibitory concentrations, where nanoemulsion was more potent than nanocapsules. The results obtained suggested that nanoformulations of essential oils are strongly recommended for therapeutic application as alternatives to antibiotics.

15.
Plants (Basel) ; 11(9)2022 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-35567125

RESUMEN

The exploitation of massive amounts of food and agro-waste represents a severe social, economic, and environmental issue. Under the growing demand for food products that are free of toxic synthetic insecticides, a methanolic extract of spent coffee grounds (SCGs), which represent the main byproduct of coffee production, was applied in the current study as a bioinsecticide against the main pests of the green bean: Spodoptera littoralis, Agrotis ipsilon, Bemisia tabaci, Empoasca fabae, and Aphis craccivora. A deterrent assay, contact bioassay, and lethal concentration analysis were performed to reveal the repellent, antifeedant, and oviposition deterrent effects. Parallel to the above-mentioned bioassays, the phytochemical composition of the methanolic SCG extract was investigated via a high-performance liquid chromatography (HPLC) analysis. Fourteen phenolic acids and five flavonoids, in addition to caffeine (alkaloid), were identified in the extract. Cinnamic, rosmarinic, and gallic acids were the predominant phenolics, while apigenin-7-glucoside was the main flavonoid, followed by naringin, catechin, and epicatechin. The extract of SCGs showed an insecticidal effect, with a mortality between 27.5 and 76% compared to the control (7.4%) and based on the concentration of the extract used. In the same trend, the oviposition efficiency revealed different batches of laid eggs (0.67, 2.33, 7.33, and 8.67 batches/jar) for 100, 50, and 25% of the SCG extract and the control. Finally, the major components of the SCG extract were docked into the insecticide acetylcholinesterase enzyme to explore their potential for inhibition, where apigenin-7-glucoside showed a higher binding affinity, followed by catechin, compared to the control (lannate). The obtained findings could be a starting point for developing novel bioinsecticides from SCGs.

16.
Molecules ; 27(4)2022 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-35208952

RESUMEN

For most researchers, discovering new anticancer drugs to avoid the adverse effects of current ones, to improve therapeutic benefits and to reduce resistance is essential. Because the COX-2 enzyme plays an important role in various types of cancer leading to malignancy enhancement, inhibition of apoptosis, and tumor-cell metastasis, an indispensable objective is to design new scaffolds or drugs that possess combined action or dual effect, such as kinase and COX-2 inhibition. The start compounds A1 to A6 were prepared through the diazo coupling of 3-aminoacetophenone with a corresponding phenol and then condensed with two new chalcone series, C7-18. The newly synthesized compounds were assessed against both COX-2 and epidermal growth factor receptor (EGFR) for their inhibitory effect. All novel compounds were screened for cytotoxicity against five cancer cell lines. Compounds C9 and G10 exhibited potent EGFR inhibition with IC50 values of 0.8 and 1.1 µM, respectively. Additionally, they also displayed great COX-2 inhibition with IC50 values of 1.27 and 1.88 µM, respectively. Furthermore, the target compounds were assessed for their cytotoxicity against pancreatic ductal cancer (Panc-1), lung cancer (H-460), human colon cancer (HT-29), human malignant melanoma (A375) and pancreatic cancer (PaCa-2) cell lines. Interestingly, compounds C10 and G12 exhibited the strongest cytotoxic effect against PaCa-2 with average IC50 values of 0.9 and 0.8 µM, respectively. To understand the possible binding modes of the compounds under investigation with the receptor cites of EGFR and COX-2, a virtual docking study was conducted.


Asunto(s)
Antineoplásicos , Chalconas , Inhibidores de la Ciclooxigenasa 2 , Proteínas de Neoplasias , Neoplasias , Inhibidores de Proteínas Quinasas , Antineoplásicos/síntesis química , Antineoplásicos/química , Antineoplásicos/farmacología , Línea Celular Tumoral , Chalconas/síntesis química , Chalconas/química , Chalconas/farmacología , Inhibidores de la Ciclooxigenasa 2/síntesis química , Inhibidores de la Ciclooxigenasa 2/química , Inhibidores de la Ciclooxigenasa 2/farmacología , Ensayos de Selección de Medicamentos Antitumorales , Receptores ErbB/antagonistas & inhibidores , Humanos , Estructura Molecular , Proteínas de Neoplasias/antagonistas & inhibidores , Proteínas de Neoplasias/metabolismo , Neoplasias/tratamiento farmacológico , Neoplasias/enzimología , Inhibidores de Proteínas Quinasas/síntesis química , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/farmacología
17.
Toxins (Basel) ; 14(2)2022 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-35202136

RESUMEN

Spent coffee grounds (SCGs), which constitute 75% of original coffee beans, represent an integral part of sustainability. Contamination by toxigenic fungi and their mycotoxins is a hazard that threatens food production. This investigation aimed to examine SCGs extract as antimycotic and anti-ochratoxigenic material. The SCGs were extracted in an eco-friendly way using isopropanol. Bioactive molecules of the extract were determined using the UPLC apparatus. The cytotoxicity on liver cancer cells (Hep-G2) showed moderate activity with selectivity compared with human healthy oral epithelial (OEC) cell lines but still lower than the positive control (Cisplatin). The antibacterial properties were examined against pathogenic strains, and the antifungal was examined against toxigenic fungi using two diffusion assays. Extract potency was investigated by two simulated models, a liquid medium and a food model. The results of the extract showed 15 phenolic acids and 8 flavonoids. Rosmarinic and syringic acids were the most abundant phenolic acids, while apigenin-7-glucoside, naringin, epicatechin, and catechin were the predominant flavonoids in the SCGs extract. The results reflected the degradation efficiency of the extract against the growth of Aspergillus strains. The SCGs recorded detoxification in liquid media for aflatoxins (AFs) and ochratoxin A (OCA). The incubation time of the extract within dough spiked with OCA was affected up to 2 h, where cooking was not affected. Therefore, SCGs in food products could be applied to reduce the mycotoxin contamination of raw materials to the acceptable regulated limits.


Asunto(s)
Antibacterianos/farmacología , Antifúngicos/farmacología , Café , Flavonoides/farmacología , Fenoles/farmacología , Residuos , Aflatoxinas/química , Aflatoxinas/metabolismo , Antibacterianos/química , Antifúngicos/química , Bacterias/efectos de los fármacos , Bacterias/crecimiento & desarrollo , Línea Celular , Supervivencia Celular/efectos de los fármacos , Flavonoides/química , Contaminación de Alimentos/prevención & control , Hongos/efectos de los fármacos , Hongos/crecimiento & desarrollo , Hongos/metabolismo , Humanos , Ocratoxinas/química , Ocratoxinas/metabolismo , Fenoles/química
18.
Foods ; 11(20)2022 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-37431005

RESUMEN

The present study aimed to develop instant mushroom soup fortified with mixed Jerusalem artichoke and Cauliflower powders (JACF) instead of wheat flour at different levels (5, 10, 15, and 20%) based on dry weight as natural sources of protein, ash, fiber, inulin, and bioactive components. Based on the proximate analysis, adding JACF with 20% recorded the highest contents of protein, ash, fibers, and inulin as 24.73, 3.67, 9.67, and 9.17%, respectively. In the same line, macro- and microelements and essential amino acids showed a significant increase during fortification with 5-20% JACF compared to the control. In contrast, the total carbohydrate content and caloric values were decreased with the raised JACF concentration in the soup. The highest content of total phenolic acids, flavonoids, glucosinolates, carotenoids, and ascorbic acid was detected in mushroom soup with a 20% JACF mixture, which coincides with the highest antioxidant activity. Gallic (20.81-94.34 mg/100 g DW) and protocatechuic (13.63-58.53 mg/100 g) acids predominated among the phenolic acids identified in the mushroom-JACF soup samples, while rutin was the main flavonoid (7.52-18.2 mg/100 g). The increase of the JACF mixture in the soup significantly enhanced the rehydration ratio, total soluble solids, color parameters, and the sensory properties of the samples. In conclusion, using JACF in mushroom soup is necessary to improve the physicochemical characteristics and nutritional impact by containing phytochemicals and enhancing the organoleptic properties of the food product.

19.
Food Chem ; 375: 131692, 2022 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-34865924

RESUMEN

The treatment of postharvest wastes is an integral part of the food value chain. Therefore, Ocimum basilicum L. residues were dried in an oven and a microwave. Volatiles were extracted using hydrodistillation, headspace solid-phase microextraction (HS-SPME) and then analyzed by Gas Chromatography-Mass Spectrometry (GC-MS). Thirty volatiles were identified in raw material, with ß-linalool, methyleugenol, methylcinnamate, and estragole predominating. Meanwhile, 24 and 18 volatiles were detected in the oven- and microwave-dried samples, with a significant decrease of methyleugenol content. The highest radical scavenging ability and total phenolic content were achieved for microwaved wastes using photochemiluminescence, DPPH, and Folin-Ciocalteu test. Moreover, 8 phenolic acids and 9 flavonoids were identified in the LC-MS/MS analysis, with significant contents of rosmarinic acid and luteolin (1042.45 and 11.68 µg/g of dry matter, respectively) in the microwaved basil. This experiment pointed out that microwaved basil wastes could be re-used in the food, pharmacy and/or cosmetic industries.


Asunto(s)
Ocimum basilicum , Antioxidantes , Cromatografía Liquida , Polifenoles , Espectrometría de Masas en Tándem
20.
Saudi J Biol Sci ; 28(9): 5349-5358, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34466114

RESUMEN

A promising Cordia myxa fruit (CMF) extract targets an additional incorporation in functional foods. It retains appropriate health welfares owing to its antioxidant properties with limited incorporation in food matrices due its hydrophobicity. Therefore, CMF extract micro- and nanocapsulation was performed to protect and facilitate consistency of produced hydrophobic foods matrices. Furthermore, to determine its phytochemicals, antioxidant, and cytotoxic effects by applying analytical HPLC, FRAP and SRB assay, respectively. HPLC analysis of the tested extracts revealed the presence of, 25.59 ± 1.78 mg catechin/g, 69.68 ± 4.20 mg quercetin/g, and 112.72 ± 8.38 mg gallic acid/g extract. The CMF extract displayed a potent DPPH radicals' scavenger and FRAP high reduction capability in a dose-dependent manner. The potent pharmacological activities of CMF extract may be ascribed to high concentration of polyphenolics including flavonoids which strongly reported to possess an antitumor and antioxidant activities. To confirm the efficient CMF incorporation in micro- and nanosystems and their thermal stabilities to withstand the high temperatures applied during some food processing. DSC of the apparent melt of non-capsulated CMF and encapsulated forms (MCMF and NCMF) in sodium alginate gel and beads was studied. Results showed that melting point of CMF extract (86.17 °C) indicating its inability whereas the MCMF and NCMF melting points (226.45 and 383.87 °C, respectively) demonstrating the capability of expending alginate - packaging material to shield the vital active compounds of C. myxa fruit to be applied in different targeted delivery products especially that disclosed to high thermal treatments.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...