Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Expo Sci Environ Epidemiol ; 34(1): 126-135, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37328620

RESUMEN

BACKGROUND: Location-specific patterns of regulated and non-regulated disinfection byproducts (DBPs) were detected in tap water samples of the Barcelona Metropolitan Area. However, it remains unclear if the detected DBPs together with undetected DPBs and organic micropollutants can lead to mixture effects in drinking water. OBJECTIVE: To evaluate the neurotoxicity, oxidative stress response and cytotoxicity of 42 tap water samples, 6 treated with activated carbon filters, 5 with reverse osmosis and 9 bottled waters. To compare the measured effects of the extracts with the mixture effects predicted from the detected concentrations and the relative effect potencies of the detected DBPs using the mixture model of concentration addition. METHODS: Mixtures of organic chemicals in water samples were enriched by solid phase extraction and tested for cytotoxicity and neurite outgrowth inhibition in the neuronal cell line SH-SY5Y and for cytotoxicity and oxidative stress response in the AREc32 assay. RESULTS: Unenriched water did not trigger neurotoxicity or cytotoxicity. After up to 500-fold enrichment, few extracts showed cytotoxicity. Disinfected water showed low neurotoxicity at 20- to 300-fold enrichment and oxidative stress response at 8- to 140-fold enrichment. Non-regulated non-volatile DBPs, particularly (brominated) haloacetonitriles dominated the predicted mixture effects of the detected chemicals and predicted effects agreed with the measured effects. By hierarchical clustering we identified strong geographical patterns in the types of DPBs and their association with effects. Activated carbon filters did not show a consistent reduction of effects but domestic reverse osmosis filters decreased the effect to that of bottled water. IMPACT STATEMENT: Bioassays are an important complement to chemical analysis of disinfection by-products (DBPs) in drinking water. Comparison of the measured oxidative stress response and mixture effects predicted from the detected chemicals and their relative effect potencies allowed the identification of the forcing agents for the mixture effects, which differed by location but were mainly non-regulated DBPs. This study demonstrates the relevance of non-regulated DBPs from a toxicological perspective. In vitro bioassays, in particular reporter gene assays for oxidative stress response that integrate different reactive toxicity pathways including genotoxicity, may therefore serve as sum parameters for drinking water quality assessment.


Asunto(s)
Agua Potable , Neuroblastoma , Humanos , Carbón Orgánico , Bioensayo , Cromatografía de Gases
2.
Environ Res ; 218: 114945, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36463999

RESUMEN

The UV/chlorine system has become an attractive alternative Advanced Oxidation Process (AOP) for the removal of recalcitrant pollutants in the last decade due to the simultaneous formation of chlorine and hydroxyl radicals. However, there is no consensus regarding the results and trends obtained in previous micropollutant removal studies by AOPs, highlighting the complexity of the UV/chlorine process and the need for further research. This study investigates the degradation of acetaminophen (ACTP) by UV/chlorine and the effects of the water matrix in the reaction kinetics. In particular, the effects of natural organic matter (NOM), alkalinity and mineral salts on the kinetics and reactive species were elucidated. The complexity of the system was revealed by the analysis of the radical generation and transformation in different water matrices, applying the kinetic modelling approach to complement the scavenger tests. The higher kinetic rates of ACTP at alkaline pH provided new insights into the chlorine reactions under UV radiation, where secondary and tertiary reactive oxygen species including ozone were proven to play the major role in degradation. On the contrary, at acidic pH, reaction kinetic modelling demonstrated that ClO• radical occurs at high concentrations in the order of 10-10 M, being therefore the main oxidant, followed by other chlorine radicals. It is noteworthy that at alkaline pH the presence of typical inorganic ions such as carbonate had little impact on ACTP degradation, contrary to the observed reduction of degradation rates at acidic pH. The expected detrimental effect of the NOM in AOPs was also evidenced, although the use of chlorine as radical source reduces the relevance of the inner filter effect in comparison to UV/H2O2.


Asunto(s)
Contaminantes Químicos del Agua , Purificación del Agua , Cloro , Agua , Peróxido de Hidrógeno , Rayos Ultravioleta , Oxidación-Reducción , Purificación del Agua/métodos , Cinética
3.
Artículo en Inglés | MEDLINE | ID: mdl-35768489

RESUMEN

BACKGROUND: Knowledge about human exposure and health effects associated with non-routinely monitored disinfection by-products (DBPs) in drinking water is sparse. OBJECTIVE: To provide insights to estimate exposure to regulated and non-regulated DBPs in drinking water. METHODS: We collected tap water from homes (N = 42), bottled water (N = 10), filtered tap water with domestic activated carbon jars (N = 6) and reverse osmosis (N = 5), and urine (N = 39) samples of participants from Barcelona, Spain. We analyzed 11 haloacetic acids (HAAs), 4 trihalomethanes (THMs), 4 haloacetonitriles (HANs), 2 haloketones, chlorate, chlorite, and trichloronitromethane in water and HAAs in urine samples. Personal information on water intake and socio-demographics was ascertained in the study population (N = 39) through questionnaires. Statistical models were developed based on THMs as explanatory variables using multivariate linear regression and machine learning techniques to predict non-regulated DBPs. RESULTS: Chlorate, THMs, HAAs, and HANs were quantified in 98-100% tap water samples with median concentration of 214, 42, 18, and 3.2 µg/L, respectively. Multivariate linear regression models had similar or higher goodness of fit (R2) compared to machine learning models. Multivariate linear models for dichloro-, trichloro-, and bromodichloroacetic acid, dichloroacetonitrile, bromochloroacetonitrile, dibromoacetonitrile, trichloropropnanone, and chlorite showed good predictive ability (R 2 = 0.8-0.9) as 80-90% of total variance could be explained by THM concentrations. Activated carbon filters reduced DBP concentrations to a variable extent (27-80%), and reverse osmosis reduced DBP concentrations ≥98%. Only chlorate was detected in bottled water samples (N = 3), with median = 13.0 µg/L. Creatinine-adjusted trichloroacetic acid was the most frequently detected HAA in urine samples (69.2%), and moderately correlated with estimated drinking water intake (r = 0.48). SIGNIFICANCE: Findings provide valuable insights for DBP exposure assessment in epidemiological studies. Validation of predictive models in a larger number of samples and replication in different settings is warranted. IMPACT STATEMENT: Our study focused on assessing and describing the occurrence of several classes of DBPs in drinking water and developing exposure models of good predictive ability for non-regulated DBPs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...