Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Biomed Res Int ; 2024: 7457900, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38884017

RESUMEN

Objective: To evaluate the enamel bonding ability and orthodontic adhesive resin degree of conversion using the experimental bracket design. Material and Methods. Thirteen bovine teeth were used in the study. The experimental bracket was modified with a translucent region in the center of its body. After enamel etching, Orthocem orthodontic adhesive (FGM, Joinville, Brazil) was applied on the bracket base for bonding. The groups were divided as follows (n = 10 per group): (1) control (CB) with standard brackets and (2) spot bracket (SB) with experimental brackets featuring a 0.8 mm translucent region at the center using carbide bur. Shear bond strength (SBS) was evaluated after 24 hours in a universal testing machine and adhesive remnant index (ARI). The degree of conversion (DC) was analyzed using Raman spectroscopy (n = 3 per group). Data were then analyzed using Student's t-test and Mann-Whitney statistical methods. Results: The SB group exhibited a higher mean SBS (10.33 MPa) compared to the CB Group (8.77 MPa). However, there was no statistical difference between the groups (p = 0.376). Both SB and CB groups had a mean ARI score of 1. Raman analysis revealed a higher degree of conversion in the SB group (49.3%) compared to the CB group (25.9%). Conclusions: The experimental support showed a higher degree of adhesive conversion, although there was no significant increase in bond strength.


Asunto(s)
Resinas Compuestas , Recubrimiento Dental Adhesivo , Esmalte Dental , Soportes Ortodóncicos , Polimerizacion , Resistencia al Corte , Animales , Bovinos , Recubrimiento Dental Adhesivo/métodos , Esmalte Dental/química , Resinas Compuestas/química , Ensayo de Materiales , Cementos Dentales/química , Cementos de Resina/química
2.
Dent Mater ; 38(10): 1610-1622, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36050192

RESUMEN

OBJECTIVES: The aim of this study was to evaluate the influence on MMP inhibition, dentin adhesion and physicochemical properties of an adhesive system incorporated with polymerizable collagen crosslinker monomer derived from cardanol. METHODS: The intermediary cardanol epoxy (CNE) was synthesized through cardanol epoxidation, followed by synthesis of cardanol methacrylate through methacrylic acid solvent-free esterification. Zymographic analysis was performed to evaluate the substances' ability to inhibit gelatinolytic enzymes. Collagen crosslinkers were added into adhesives systems according to the following groups: Ybond Universal® (Control), Ybond® + 2 % proanthocyanidin (PAC), Ybond® + 2 % unsaturated cardanol (Cardanol) and Ybond® + 2 % cardanol methacrylate (CNMA). Degree of conversion (DC) of the adhesives was assessed by FT-IR. Disk-shaped specimens were prepared for water sorption (WS) and solubility (SL) tests. Human third molars were sectioned to expose medium dentin and restored according to the different adhesives used (n = 5). Then, the specimens were cut into 1 mm2 sticks to evaluate, after 24 h and 6-month aging, microtensile bond strength (µTBS) and nanoleakage by scanning electron microscopy. Data were analysed with ANOVA and Tukey's post-test (α = 0.05). RESULTS: CNMA and PAC completely inhibited all forms of gelatinolytic enzymes. Cardanol achieved a significantly lowest DC, while the other groups did not differ from each other (p > 0.05). PAC achieved significantly higher water sorption, while CNMA solubility was significantly lower when compared to the other adhesives (p < 0.05). PAC provided a statistically higher 24 h and 6-month aging bond strength. Intermediary similar µTBS were presented by control and CNMA (p = 0.108). All adhesives applied attained significantly reduced bond strength after aging (p < 0.05). Interfaces created using CNMA were almost devoid of silver deposits initially, however all groups showed large amounts of silver deposits on resin-dentin interface subjected to water aging. SIGNIFICANCE: Although CNMA was effective in inhibiting gelatinolytic enzymes, when incorporated into a universal adhesive it could not promote less degradation of the adhesive interface after water aging. Since it is a hydrophobic monomer, CNMA did not interact well with dentin collagen, however it reduced the solubility of the adhesive system besides not interfering in its polymerization.


Asunto(s)
Recubrimiento Dental Adhesivo , Proantocianidinas , Colágeno , Dentina , Recubrimientos Dentinarios/química , Humanos , Ensayo de Materiales , Metacrilatos/química , Fenoles , Cementos de Resina/química , Plata , Espectroscopía Infrarroja por Transformada de Fourier , Resistencia a la Tracción , Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA