Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Dalton Trans ; 53(13): 5775-5778, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38465721

RESUMEN

para-Substitution reactions on C6F5 rings of Lewis acids have been exploited to achieve triply substituted derivatives. The reaction of B(C6F5)3 with P(SiMe3)3 ultimately affords the Lewis acid B(C6F4P(SiMe3)2)31. This species binds Lewis bases affording the adducts LB(C6F4P(SiMe3)2)3 (L = MeCN 2, OPEt33, PMe34, PBu35) and reacts with LiMe to give the salt [Li][MeB(C6F4P(SiMe3)2)3]·3THF 6. It also reacts with H2O to give (L)B(C6F4PH2)3 (L = H2O 7, MeCN 8). In an analogous fashion, [(C6F5)3PF][B(C6F5)4] was converted to [FP(C6F4P(SiMe3)2)3] [B(C6F5)4] 9 and subsequently to [(MeO)P(C6F4PH2)3][B(C6F5)4] 10.

2.
Angew Chem Int Ed Engl ; 63(15): e202400313, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38316614

RESUMEN

Replacement of sp2-hybridized carbon in polycyclic aromatic hydrocarbons (PAHs) by boron affords electron-deficient π-scaffolds due to the vacant pz-orbital of three-coordinate boron with the potential for pronounced electronic interactions with electron-rich metal surfaces. Using a diboraperylene diborinic acid derivative as precursor and a controlled on-surface non-covalent synthesis approach, we report on a self-assembled chiral supramolecular kagome network on an Ag(111) surface stabilized by intermolecular hydrogen-bonding interactions at low temperature. Scanning tunneling microscopy (STM) and spectroscopy (STS) reveal a flat band at ca. 0.33 eV above the Fermi level which is localized at the molecule center, in good agreement with tight-binding model calculations of flat bands characteristic for kagome lattices.

3.
Angew Chem Int Ed Engl ; 61(8): e202115746, 2022 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-34914168

RESUMEN

Herein we devise and execute a new synthesis of a pristine boron-doped nanographene. Our target boron-doped nanographene was designed based on DFT calculations to possess a low LUMO energy level and a narrow band gap derived from its precise geometry and B-doping arrangement. Our synthesis of this target, a doubly B-doped hexabenzopentacene (B2 -HBP), employs six net C-H borylations of an alkene, comprising consecutive hydroboration/electrophilic borylation/dehydrogenation and BBr3 /AlCl3 /2,6-dichloropyridine-mediated C-H borylation steps. As predicted by our calculations, B2 -HBP absorbs strongly in the visible region and emits in the NIR up to 1150 nm in o-dichlorobenzene solutions. Furthermore, B2 -HBP possesses a very low LUMO level, showing two reversible reductions at -1.00 V and -1.17 V vs. Fc+ /Fc. Our methodology is surprisingly selective despite its implementation of unfunctionalized precursors and offers a new approach to the synthesis of pristine B-doped polycyclic aromatic hydrocarbons.

4.
Dalton Trans ; 49(6): 1839-1846, 2020 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-31965118

RESUMEN

In this paper we probe the reactivity of the borenium cations [C3H2(NCH2C6H4)(NCH2Ph)BH][B(C6F5)4] 2 and [C3H2(NCH2C6H4)2B][B(C6F5)4] 3. The reactions of 2 with cyclohexene or 3,3-dimethyl-1-butene gave the alkyl-aryl borenium salts [PhCH2(CHN)2CCH2C6H4BR][B(C6F5)4] (R = Cy 4, CH2CH2tBu 5) while the corresponding reactions with diphenylacetylene, 1-hexyne and 1-phenyl-1-propyne gave the aryl-alkenyl borenium cation salts [PhCH2(CHN)2CCH2C6H4BC(R1)C(H)R2][B(C6F5)4] (R1 = R2 = Ph 6, R1 = H, R2 = C4H97, R1 = Me, R2 = Ph 8a, R1 = Ph, R2 = Me 8b). In contrast, the reaction of 2 with ethynyldiphenylphosphane or 2-vinylpyridine lead to the formation of the adducts, [PhCH2(CHN)2CCH2C6H4B(H)P(Ph2)CCH][B(C6F5)4] 9, [PhCH2(CHN)2CCH2C6H4B(H)NC5H4C(H)CH2][B(C6F5)4] 10, respectively, while the more bulky donor H2C[double bond, length as m-dash]C(Ph)PMes2 gave 1,2-hydroboration of the phosphinoalkene affording [PhCH2(CHN)2CCH2C6H4BCH2CH(Ph)PMes2][B(C6F5)4] 11. In another vein of reactivity, one or two equivalents of the FLP, PtBu3/B(C6F5)3 is shown to react with 3 to give the zwitterionic borenium-borate species [C2H2(NCH(BC(CHNCH2C6H4)2)C6H4)(NCH(B(C6F5)3)C6H4)CB] 12 and the anionic bis-borate species[tBu3PH][C2H2(NCH(B(C6F5)3)2C6H4)2CB] 13. The implications of these findings are discussed.

5.
Angew Chem Int Ed Engl ; 58(46): 16504-16507, 2019 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-31507020

RESUMEN

A new strategy is demonstrated for the synthesis of warped, negatively curved, all-sp2 -carbon π-scaffolds. Multifold C-C coupling reactions are used to transform a polyaromatic borinic acid into a saddle-shaped polyaromatic hydrocarbon (2) bearing two heptagonal rings. Notably, this Schwarzite substructure is synthesized in only two steps from an unfunctionalized alkene. A highly warped structure of 2 was revealed by X-ray crystallographic studies and pronounced flexibility of this π-scaffold was ascertained by experimental and computational studies. Compound 2 exhibits excellent solubility, visible range absorption and fluorescence, and readily undergoes two reversible one-electron oxidations at mild potentials.

6.
J Am Chem Soc ; 141(22): 9096-9104, 2019 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-31117551

RESUMEN

Boron-doping has long been recognized as a promising LUMO energy-lowering modification of graphene and related polycyclic aromatic hydrocarbons (PAHs). Unfortunately, synthetic difficulties have been a significant bottleneck for the understanding, optimization, and application of precisely boron-doped PAHs for optoelectronic purposes. Herein, a facile one-pot hydroboration electrophilic borylation cascade/dehydrogenation approach from simple alkene precursors is coupled with postsynthetic B-substitution to give access to ten ambient-stable core- and periphery-tuned boron-doped PAHs. These include large hitherto unknown doubly boron-doped analogues of anthanthrene and triangulene. Crystallographic, optical, electrochemical, and computational studies were performed to clarify the effect of boron-doped PAH shape, size, and structure on optoelectronic properties. Our molecular tuning allowed the synthesis of molecules exhibiting visible-range absorption, near-unity fluorescence quantum yields, and, to our knowledge, the most facile electrochemical reductions of any reported ambient-stable boron-doped PAHs (corresponding to LUMO energy levels as low as fullerenes). Finally, our study describes the first implementation of a precise three-coordinate boron-substituted PAH as an acceptor material in organic solar cells with power conversion efficiencies (PCEs) of up to 3%.

7.
Angew Chem Int Ed Engl ; 56(39): 11846-11850, 2017 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-28741895

RESUMEN

Reaction of an N-heterocyclic carbene (NHC)-borenium ion with 9,10-distyrylanthracene forms four B-C bonds through two selective, tandem hydroboration-electrophilic C-H borylations to yield an isolable, crystallographically characterizable polycyclic diborenium ion as its [NTf2 ]- salt (1). Dehydrogenation of 1 with TEMPO radical followed by acidic workup yields a 3,9-diboraperylene as its corresponding borinic acid (2). This sequence can be performed in one pot to allow the facile, metal-free conversion of an alkene into a small molecule containing a boron-doped graphene substructure. Doubly boron-doped perylene 2 exhibits visible range absorbance and fluorescence in chloroform solution (Φ=0.63) and undergoes two reversible one-electron reductions at moderate potentials of -1.30 and -1.64 eV vs. ferrocenium/ferrocene in DMSO. Despite sterically accessible boron centers and facile electrochemical reductions, compound 2 is air-, moisture-, and silica gel-stable.

8.
Dalton Trans ; 45(39): 15303-15316, 2016 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-27383522

RESUMEN

The carbene derived from (1R,3S)-camphoric acid was used to prepare the borane adduct with Piers' borane 7. Subsequent hydride abstraction gave the borenium cation 8. Adducts with 9-BBN and the corresponding (1R,3S)-camphoric acid-derived carbene bearing increasingly sterically demanding N-substituents (R = Me 9, Et 10, i-Pr 11) and the corresponding borenium cations 12-14 were also prepared. These cations were not active as catalysts in hydrogenation, although 9-11 were shown to undergo carbene ring expansion reactions at 50 °C to give species 15-17. The IBOX-carbene precursors 18 and 19 derived from amino alcohols (S)-valinol and (S)-tert-leucinol (R = i-Pr, t-Bu) were used to prepare borane adducts 20-23. Reaction of the carbenes 1,3-dimethylimidazol-2-ylidene (IMe), 1,3-di-iso-propylimidazol-2-ylidene (IPr) 1-benzyl-3-methylimidazol-2-ylidene (IBnMe), 1-methyl-3-phenylimidazol-2-ylidene (IPhMe) and 1-tert-butyl-3-methylimidazol-2-ylidene (ItBuMe) with diisopinocampheylborane (Ipc2BH) gave chiral adducts: (IMe)(Ipc2BH) 24, (IPr)(Ipc2BH) 25, (IBnMe)(Ipc2BH) 26, (IPhMe)(Ipc2BH) 27, and (ItBuMe)(Ipc2BH) 28. Triazolylidene-type adducts including the (10)-phenyl-9-borabicyclo [3.3.2]decane adduct of 1,3,4-triphenyl-1H-1,2,3-triazolium, rac-29 and the 9-BBN derivative of (S)-2-amino-2'-methoxy-1,1'-binaphthalene-1,2,3-triazolium 34a/b were also prepared. In catalytic studies of these systems, while several species were competent catalysts for imine reduction, in general, low enantioselectivities, ranging from 1-20% ee, were obtained. The implications for chiral borenium cation catalyst design are considered.

9.
Chem Commun (Camb) ; 51(76): 14322-5, 2015 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-26273801

RESUMEN

Sequential reaction of 2-lithio-1-methylimidazole with 9-borabicyclo[3.3.1]nonane (9-BBN) dimer and 9-Cl-9-BBN yields diboryl-N-heterocycle C4H5N2(H)(BC8H14)2 (1). Reaction of 1 with I2 results in the net substitution of chelated hydride for a singly boron-bound iodide to produce C4H5N2(I)(BC8H14)2 (2). Conversely, reaction of 1 with [Ph3C][B(C6F5)4] results in the formation of the bidentate cationic Lewis acid [(C4H5N2)(BC8H14)2][B(C6F5)4] (3). Compound 3 catalyzes the hydrogenation of N-benzylidene-tert-butylamine at room-temperature.

10.
Angew Chem Int Ed Engl ; 54(17): 5214-7, 2015 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-25756464

RESUMEN

The NHC-borane adduct (IBn)BH3 (1) (NHC= N-heterocyclic carbene; IBn=1,3-dibenzylimidazol-2ylidene) reacts with [Ph3 C][B(C6 F5 )4 ] through sequential hydride abstraction and dehydrogenative cationic borylation(s) to give singly or doubly ring closed NHC-borenium salts 2 and 3. The planar doubly ring closed product [C3 H2 (NCH2 C6 H4 )2 B][B(C6 F5 )4 ] is resistant to quaternization at boron by Et2 O coordination, but forms classical Lewis acid-base adducts with the stronger donors Ph3 P, Et3 PO, or 1,4-diazabicyclo[2.2.2]octane (DABCO). Treatment of 3 with tBu3 P selectively yields the unusual oligomeric borenium salt trans-[(C3 H2 (NCH2 C6 H4 )2 B)2 (C3 H2 (NCHC6 H4 )2 B)][B(C6 F5 )4 ] (7).

11.
Chem Sci ; 6(3): 2010-2015, 2015 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-29449920

RESUMEN

This manuscript probes the steric and electronic attributes that lead to "frustrated Lewis pair" (FLP)-type catalysis of imine hydrogenation by borenium ions. Hydride abstraction from (ItBu)HB(C6F5)22 prompts intramolecular C-H bond activation to give (CHN)2(tBu) (CMe2CH2)CB(C6F5)23, defining an upper limit of Lewis acidity for FLP hydrogenation catalysis. A series of seven N-heterocyclic carbene-borane (NHC-borane) adducts ((R'CNR)2C)(HBC8H14) (R' = H, R = dipp 4a, Mes 5a, Me 8a; R = Me R' = Me 9a, Cl, 10a) and ((HC)2(NMe)(NR)C)(HBC8H14) (R = tBu, 6a, Ph 7a) are prepared and converted to corresponding borenium salts. These species are evaluated as catalysts for metal-free imine hydrogenation at room temperature. Systematic tuning of the carbene donor for the hydrogenation of archetypal substrate N-benzylidene-tert-butylamine achieves the highest reported turn-over frequencies for FLP-catalyzed hydrogenation at amongst the lowest reported catalyst loadings. The most active NHC-borenium catalyst of this series, derived from 10a, is readily isolable, crystallographically characterized and shown to be effective in the hydrogenation catalysis of functional group-containing imines and N-heterocycles.

12.
J Am Chem Soc ; 134(38): 15728-31, 2012 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-22931196

RESUMEN

The readily prepared borenium salt [(IiPr(2))(BC(8)H(14))][B(C(6)F(5))(4)] (2) [IiPr(2) = C(3)H(2)(NiPr)(2)] is shown to activate H(2) heterolytically in the presence of tBu(3)P. Compound 2 also acts as a catalyst for the metal-free hydrogenation of imines and enamines at room temperature.

13.
Inorg Chem ; 50(24): 12338-48, 2011 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-21534552

RESUMEN

In 2006, our group reported the first metal-free systems that reversibly activate hydrogen. This finding was extended to the discovery of "frustrated Lewis pair" (FLP) catalysts for hydrogenation. It is this catalysis that is the focal point of this article. The development and applications of such FLP hydrogenation catalysts are reviewed, and some previously unpublished data are reported. The scope of the substrates is expanded. Optimal conditions and functional group tolerance are considered and applied to targets of potential commercial significance. Recent developments in asymmetric FLP hydrogenations are also reviewed. The future of FLP hydrogenation catalysts is considered.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA