Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Acta Biomater ; 129: 159-168, 2021 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-34022466

RESUMEN

Given its complex shape and relatively small size, the trapezium surface at the trapeziometacarpal (TMC) joint is a particularly attractive target for anatomic biologic joint resurfacing, especially given its propensity to develop osteoarthritis, and the limited and sub-optimal treatment options available. For this to advance to clinical translation, however, an appropriate large animal model is required. In this study, we explored the porcine accessory carpal bone (ACB) as a model for the human trapezium. We characterized ACB anatomy, geometry, joint and tissue-scale mechanics, and composition across multiple donors. We showed that the ACB is similar both in size, and in the saddle shape of the main articulating surface to the human trapezium, and that loads experienced across each joint are similar. Using this information, we then devised a fabrication method and workflow to produce patient-specific tissue-engineered replicas based on CT scans, and showed that when such replicas are implanted orthotopically in an ex vivo model, normal loading is restored. Data from this study establish the porcine ACB as a model system in which to evaluate function of engineered living joint resurfacing strategies. STATEMENT OF SIGNIFICANCE: Biologic joint resurfacing, or the replacement of a joint with living tissue as opposed to metal and plastic, is the holy grail of orthopaedic tissue engineering. However, despite marked advances in engineering native-like osteochondral tissues and in matching patient-specific anatomy, these technologies have not yet reached clinical translation. Given its propensity for developing osteoarthritis, as well as its small size and complex shape, the trapezial surface of the trapeziometacarpal joint at the base of the thumb presents a unique opportunity for pursuing a biologic joint resurfacing strategy. This work establishes the porcine accessory carpal bone as an animal model for the human trapezium and presents a viable test-bed for evaluating the function of engineered living joint resurfacing strategies.


Asunto(s)
Artroplastia de Reemplazo , Productos Biológicos , Huesos del Carpo , Osteoartritis , Hueso Trapecio , Animales , Humanos , Osteoartritis/cirugía , Porcinos , Hueso Trapecio/cirugía
2.
J Orthop Res ; 39(11): 2323-2332, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-33368606

RESUMEN

Articular cartilage injury can lead to joint-wide erosion and the early onset of osteoarthritis. To address this, we recently developed a rapid fabrication method to produce patient-specific engineered cartilage tissues to replace an entire articular surface. Here, we extended that work by coupling a mesenchymal stromal cell-laden hydrogel (methacrylated hyaluronic acid) with the porous polycaprolactone (PCL) bone integrating phase and assessed the composition and mechanical performance of these constructs over time. To improve initial construct stability, PCL/hydrogel interface parameters were first optimized by varying PCL pretreatment (with sodium hydroxide before ethanol) before hydrogel infusion. Next, cylindrical osteochondral constructs were formed and cultured in media containing transforming growth factor ß3 for up to 8 weeks, with constructs evaluated for viability, histological features, and biochemical content. Mechanical properties were also assessed in axial compression and via an interface shear strength assay. Results showed that the fabrication process was compatible with cell viability, and that construct biochemical content and mechanical properties increased with time. Interestingly, compressive properties peaked at 5 weeks, while interfacial shear properties continued to improve beyond this time point. Finally, these fabrication methods were combined with a custom mold developed from limb-specific computed tomography imaging data to create an anatomic implantable cell-seeded biologic joint surface, which showedmaturation similar to the osteochondral cylinders. Future work will apply these advances in large animal models of critically sized osteochondral defects to study repair and whole joint resurfacing.


Asunto(s)
Cartílago Articular , Células Madre Mesenquimatosas , Animales , Huesos , Cartílago Articular/patología , Humanos , Hidrogeles/química , Ingeniería de Tejidos/métodos , Andamios del Tejido/química
3.
Lancet Infect Dis ; 21(1): 52-58, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33058797

RESUMEN

BACKGROUND: The degree of protective immunity conferred by infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is currently unknown. As such, the possibility of reinfection with SARS-CoV-2 is not well understood. We describe an investigation of two instances of SARS-CoV-2 infection in the same individual. METHODS: A 25-year-old man who was a resident of Washoe County in the US state of Nevada presented to health authorities on two occasions with symptoms of viral infection, once at a community testing event in April, 2020, and a second time to primary care then hospital at the end of May and beginning of June, 2020. Nasopharyngeal swabs were obtained from the patient at each presentation and twice during follow-up. Nucleic acid amplification testing was done to confirm SARS-CoV-2 infection. We did next-generation sequencing of SARS-CoV-2 extracted from nasopharyngeal swabs. Sequence data were assessed by two different bioinformatic methodologies. A short tandem repeat marker was used for fragment analysis to confirm that samples from both infections came from the same individual. FINDINGS: The patient had two positive tests for SARS-CoV-2, the first on April 18, 2020, and the second on June 5, 2020, separated by two negative tests done during follow-up in May, 2020. Genomic analysis of SARS-CoV-2 showed genetically significant differences between each variant associated with each instance of infection. The second infection was symptomatically more severe than the first. INTERPRETATION: Genetic discordance of the two SARS-CoV-2 specimens was greater than could be accounted for by short-term in vivo evolution. These findings suggest that the patient was infected by SARS-CoV-2 on two separate occasions by a genetically distinct virus. Thus, previous exposure to SARS-CoV-2 might not guarantee total immunity in all cases. All individuals, whether previously diagnosed with COVID-19 or not, should take identical precautions to avoid infection with SARS-CoV-2. The implications of reinfections could be relevant for vaccine development and application. FUNDING: Nevada IDEA Network of Biomedical Research, and the National Institute of General Medical Sciences (National Institutes of Health).


Asunto(s)
COVID-19/diagnóstico , Reinfección/diagnóstico , SARS-CoV-2/genética , Adulto , Genoma Viral , Humanos , Masculino , Filogenia
4.
Adv Healthc Mater ; 7(2)2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29121458

RESUMEN

The current lack of knowledge about the effect of maternally administered drugs on the developing fetus is a major public health concern worldwide. The first critical step toward predicting the safety of medications in pregnancy is to screen drug compounds for their ability to cross the placenta. However, this type of preclinical study has been hampered by the limited capacity of existing in vitro and ex vivo models to mimic physiological drug transport across the maternal-fetal interface in the human placenta. Here the proof-of-principle for utilizing a microengineered model of the human placental barrier to simulate and investigate drug transfer from the maternal to the fetal circulation is demonstrated. Using the gestational diabetes drug glyburide as a model compound, it is shown that the microphysiological system is capable of reconstituting efflux transporter-mediated active transport function of the human placental barrier to limit fetal exposure to maternally administered drugs. The data provide evidence that the placenta-on-a-chip may serve as a new screening platform to enable more accurate prediction of drug transport in the human placenta.


Asunto(s)
Dispositivos Laboratorio en un Chip , Placenta/citología , Femenino , Gliburida , Humanos , Embarazo
5.
Acta Biomater ; 58: 1-11, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28629894

RESUMEN

Biomimetic design in cartilage tissue engineering is a challenge given the complexity of the native tissue. While numerous studies have generated constructs with near-native bulk properties, recapitulating the depth-dependent features of native tissue remains a challenge. Furthermore, limitations in nutrient transport and matrix accumulation in engineered constructs hinders maturation within the central core of large constructs. To overcome these limitations, we fabricated tri-layered constructs that recapitulate the depth-dependent cellular organization and functional properties of native tissue using zonally derived chondrocytes co-cultured with MSCs. We also introduced porous hollow fibers (HFs) and HFs/cotton threads to enhance nutrient transport. Our results showed that tri-layered constructs with depth-dependent organization and properties could be fabricated. The addition of HFs or HFs/threads improved matrix accumulation in the central core region. With HF/threads, the local modulus in the deep region of tri-layered constructs nearly matched that of native tissue, though the properties in the central regions remained lower. These constructs reproduced the zonal organization and depth-dependent properties of native tissue, and demonstrate that a layer-by-layer fabrication scheme holds promise for the biomimetic repair of focal cartilage defects. STATEMENT OF SIGNIFICANCE: Articular cartilage is a highly organized tissue driven by zonal heterogeneity of cells, extracellular matrix proteins and fibril orientations, resulting in depth-dependent mechanical properties. Therefore, the recapitulation of the functional properties of native cartilage in a tissue engineered construct requires such a biomimetic design of the morphological organization, and this has remained a challenge in cartilage tissue engineering. This study demonstrates that a layer-by-layer fabrication scheme, including co-cultures of zone-specific articular CHs and MSCs, can reproduce the depth-dependent characteristics and mechanical properties of native cartilage while minimizing the need for large numbers of chondrocytes. In addition, introduction of a porous hollow fiber (combined with a cotton thread) enhanced nutrient transport and depth-dependent properties of the tri-layered construct. Such a tri-layered construct may provide critical advantages for focal cartilage repair. These constructs hold promise for restoring native tissue structure and function, and may be beneficial in terms of zone-to-zone integration with adjacent host tissue and providing more appropriate strain transfer after implantation.


Asunto(s)
Cartílago/metabolismo , Condrocitos/metabolismo , Matriz Extracelular/química , Células Madre Mesenquimatosas/metabolismo , Ingeniería de Tejidos , Andamios del Tejido/química , Animales , Transporte Biológico Activo , Cartílago/citología , Bovinos , Condrocitos/citología , Técnicas de Cocultivo , Células Madre Mesenquimatosas/citología , Porosidad
6.
Nat Commun ; 7: 10865, 2016 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-26936319

RESUMEN

Mesenchymal stem cells (MSCs) display substantial cell-to-cell heterogeneity, complicating their use in regenerative medicine. However, conventional bulk assays mask this variability. Here we show that both chondrocytes and chondrogenically induced MSCs exhibit substantial mRNA expression heterogeneity. Single-molecule RNA FISH to measure mRNA expression of differentiation markers in single cells reveals that sister cell pairs have high levels of mRNA variability, suggesting that marker expression is not heritable. Surprisingly, this variability does not correlate with cell-to-cell differences in cartilage-like matrix production. Transcriptome-wide analysis suggests that no combination of markers can predict functional potential. De-differentiating chondrocytes also show a disconnect between mRNA expression of the cartilage marker aggrecan and cartilage-like matrix accumulation. Altogether, these quantitative analyses suggest that sorting subpopulations based on these markers would only marginally enrich the progenitor population for 'superior' MSCs. Our results suggest that instantaneous mRNA abundance of canonical markers is tenuously linked to the chondrogenic phenotype at the single-cell level.


Asunto(s)
Condrocitos/fisiología , Regulación de la Expresión Génica/fisiología , Células Madre Mesenquimatosas/fisiología , Animales , Biomarcadores/metabolismo , Bovinos , Diferenciación Celular/fisiología , Matriz Extracelular , Hibridación Fluorescente in Situ , ARN Mensajero
7.
J Orthop Res ; 33(5): 747-54, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25640328

RESUMEN

Degeneration of the intervertebral discs is strongly implicated as a cause of low back pain. Since current treatments for discogenic low back pain show poor long-term efficacy, a number of new biological strategies are being pursued. For such therapies to succeed, it is critical that they be validated in conditions that mimic the unique biochemical microenvironment of the nucleus pulposus (NP), which include low oxygen tension. Therefore, the objective of this study was to investigate the effects of oxygen tension on NP cell functional extracellular matrix elaboration in 3D culture. Bovine NP cells were encapsulated in agarose constructs and cultured for 14 or 42 days in either 20% or 2% oxygen in defined media containing transforming growth factor beta-3. At each time point, extracellular matrix composition, biomechanics, and mRNA expression of key phenotypic markers were evaluated. Results showed that while bulk mechanics and composition were largely independent of oxygen level, low oxygen promoted improved restoration of the NP phenotype, higher mRNA expression of extracellular matrix and NP specific markers, and more uniform matrix elaboration. These findings indicate that culture under physiological oxygen levels is an important consideration for successful development of cell and growth factor-based regenerative strategies for the disc.


Asunto(s)
Matriz Extracelular/metabolismo , Hipoxia/metabolismo , Disco Intervertebral/metabolismo , Animales , Bovinos , Células Cultivadas , Sefarosa , Factor de Crecimiento Transformador beta3
8.
J Biomech ; 47(9): 2173-82, 2014 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-24239005

RESUMEN

The success of stem cell-based cartilage repair requires that the regenerate tissue reach a stable state. To investigate the long-term stability of tissue engineered cartilage constructs, we assessed the development of compressive mechanical properties of chondrocyte and mesenchymal stem cell (MSC)-laden three dimensional agarose constructs cultured in a well defined chondrogenic in vitro environment through 112 days. Consistent with previous reports, in the presence of TGF-ß, chondrocytes outperformed MSCs through day 56, under both free swelling and dynamic culture conditions, with MSC-laden constructs reaching a plateau in mechanical properties between days 28 and 56. Extending cultures through day 112 revealed that MSCs did not simply experience a lag in chondrogenesis, but rather that construct mechanical properties never matched those of chondrocyte-laden constructs. After 56 days, MSC-laden constructs underwent a marked reversal in their growth trajectory, with significant declines in glycosaminoglycan content and mechanical properties. Quantification of viability showed marked differences in cell health between chondrocytes and MSCs throughout the culture period, with MSC-laden construct cell viability falling to very low levels at these extended time points. These results were not dependent on the material environment, as similar findings were observed in a photocrosslinkable hyaluronic acid (HA) hydrogel system that is highly supportive of MSC chondrogenesis. These data suggest that, even within a controlled in vitro environment that is conducive to chondrogenesis, there may be an innate instability in the MSC phenotype that is independent of scaffold composition, and may ultimately limit their application in functional cartilage repair.


Asunto(s)
Cartílago/citología , Células Madre Mesenquimatosas/citología , Animales , Células de la Médula Ósea/citología , Cartílago/metabolismo , Bovinos , Supervivencia Celular , Células Cultivadas , Condrocitos/citología , Condrogénesis , Fémur , Glicosaminoglicanos/metabolismo , Hidrogeles , Sefarosa , Ingeniería de Tejidos/métodos , Andamios del Tejido
9.
Acta Biomater ; 8(8): 3027-34, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22546516

RESUMEN

Engineered cartilage based on adult mesenchymal stem cells (MSCs) is an alluring goal for the repair of articular defects. However, efforts to date have failed to generate constructs with sufficient mechanical properties to function in the demanding environment of the joint. Our findings with a novel photocrosslinked hyaluronic acid (HA) hydrogel suggest that stiff gels (high HA concentration, 5% w/v) foster chondrogenic differentiation and matrix production, but limit overall functional maturation due to the inability of the formed matrix to diffuse away from the point of production and form a contiguous network. In the current study, we hypothesized that increasing the MSC seeding density would decrease the required diffusional distance, and so expedite the development of functional properties. To test this hypothesis bovine MSCs were encapsulated at seeding densities of either 20,000,000 or 60,000,000 cells ml(-1) in 1%, 3%, and 5% (w/v) HA hydrogels. Counter to our hypothesis the higher concentration HA gels (3% and 5%) did not develop more rapidly with increased MSC seeding density. However, the biomechanical properties of the low concentration (1%) HA constructs increased markedly (nearly 3-fold with a 3-fold increase in seeding density). To ensure that optimal nutrient access was delivered, we next cultured these constructs under dynamic culture conditions (with orbital shaking) for 9 weeks. Under these conditions 1% HA seeded at 60,000,000 MSCs ml(-1) reached a compressive modulus in excess of 1 MPa (compared with 0.3-0.4 MPa for free swelling constructs). This is the highest level we have reported to date in this HA hydrogel system, and represents a significant advance towards functional stem cell-based tissue engineered cartilage.


Asunto(s)
Cartílago/fisiología , Condrogénesis/efectos de los fármacos , Ácido Hialurónico/farmacología , Hidrogeles/farmacología , Células Madre Mesenquimatosas/citología , Ingeniería de Tejidos/métodos , Animales , Cartílago/efectos de los fármacos , Bovinos , Recuento de Células , Células Inmovilizadas/citología , Células Inmovilizadas/efectos de los fármacos , Células Inmovilizadas/metabolismo , Colágeno/metabolismo , Difusión/efectos de los fármacos , Módulo de Elasticidad/efectos de los fármacos , Fluoresceínas/metabolismo , Fluorescencia , Glicosaminoglicanos/metabolismo , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/metabolismo
10.
J Tissue Eng Regen Med ; 4(7): 514-23, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20872738

RESUMEN

A main challenge in tissue engineering and regenerative medicine is achieving local and efficient growth factor release to guide cell function. Gelatin is a denatured form of collagen that cells can bind to and degrade through enzymatic action. In this study, gelatin microspheres were used to release bone morphogenetic protein 2 (BMP2). Spherical microparticles with diameters in the range of 2-6 µm were created by an emulsification process and were stabilized by crosslinking with the small molecule genipin. The degree of crosslinking was varied by controlling the incubation time in genipin solution. Loading rate studies, using soy bean trypsin inhibitor as a model protein, showed rapid protein uptake over the first 24 h, followed by a levelling off and then a further increase after approximately 3 days, as the microspheres swelled. Growth factor release studies using microspheres crosslinked to 20%, 50% and 80% of saturation and then loaded with BMP2 showed that higher degrees of crosslinking resulted in higher loading efficiency and slower protein release. After 24 h, the concentration profiles produced by all microsphere formulations were steady and approximately equal. Microspheres incubated with adult human mesenchymal stem cells accumulated preferentially on the cell surface, and degraded over time in culture. BMP2-loaded microspheres caused a three- to eight-fold increase in expression of the bone sialoprotein gene after 14 days in culture, with more crosslinked beads producing a greater effect. These results demonstrate that genipin-crosslinked gelatin microspheres can be used to deliver growth factors locally to cells in order to direct their function.


Asunto(s)
Proteína Morfogenética Ósea 2/farmacología , Sistemas de Liberación de Medicamentos , Gelatina/química , Glicósidos Iridoides/química , Células Madre Mesenquimatosas/metabolismo , Microesferas , Proteína Morfogenética Ósea 2/química , Células Cultivadas , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Sialoproteína de Unión a Integrina/biosíntesis , Iridoides , Células Madre Mesenquimatosas/citología
11.
Eur Cell Mater ; 19: 72-85, 2010 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-20186667

RESUMEN

Mesenchymal stem cells (MSCs) are an attractive cell source for cartilage tissue engineering given their ability to undergo chondrogenesis in 3D culture systems. Mechanical forces play an important role in regulating both cartilage development and MSC chondrogenic gene expression, however, mechanical stimulation has yet to enhance the mechanical properties of engineered constructs. In this study, we applied long-term dynamic compression to MSC-seeded constructs and assessed whether varying pre-culture duration, loading regimens and inclusion of TGF-beta3 during loading would influence functional outcomes and these phenotypic transitions. Loading initiated before chondrogenesis decreased functional maturation, although chondrogenic gene expression increased. In contrast, loading initiated after chondrogenesis and matrix elaboration further improved the mechanical properties of MSC-based constructs, but only when TGF-beta3 levels were maintained and under specific loading parameters. Although matrix quantity was not affected by dynamic compression, matrix distribution, assessed histologically and by FT-IRIS analysis, was significantly improved on the micro- (pericellular) and macro- (construct expanse) scales. Further, whole genome expression profiling revealed marked shifts in the molecular topography with dynamic loading. These results demonstrate, for the first time, that dynamic compressive loading initiated after a sufficient period of chondro-induction and with sustained TGF-beta exposure enhances matrix distribution and the mechanical properties of MSC-seeded constructs.


Asunto(s)
Cartílago/fisiología , Cartílago/cirugía , Condrocitos/trasplante , Hidrogel de Polietilenoglicol-Dimetacrilato/química , Trasplante de Células Madre Mesenquimatosas/métodos , Ingeniería de Tejidos/métodos , Andamios del Tejido/tendencias , Animales , Fenómenos Biomecánicos , Cartílago/citología , Bovinos , Células Cultivadas , Condrocitos/efectos de los fármacos , Condrocitos/fisiología , Matriz Extracelular/química , Matriz Extracelular/fisiología , Proteínas de la Matriz Extracelular/genética , Proteínas de la Matriz Extracelular/metabolismo , Regeneración Tisular Dirigida/métodos , Hidrogel de Polietilenoglicol-Dimetacrilato/uso terapéutico , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/fisiología , Factores de Tiempo , Factor de Crecimiento Transformador beta3/farmacología , Soporte de Peso/fisiología
12.
J Biomech ; 43(1): 128-36, 2010 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-19828149

RESUMEN

In this review, we outline seminal and recent work highlighting the potential of mesenchymal stem cells (MSCs) in producing cartilage-like tissue equivalents. Specific focus is placed on the mechanical properties of engineered MSC-based cartilage and how these properties relate to that of engineered cartilage based on primary chondrocytes and to native tissue properties. We discuss current limitations and/or concerns that must be addressed for the clinical realization of MSC-based cartilage therapeutics, and provide some insight into potential underpinnings for the observed deviations from chondrocyte-based engineered constructs. We posit that these differences reveal specific deficits in terms of our description of chondrogenesis, and suggest that new benchmarks must be developed towards this end. Further, we describe the growing body of literature on the mechanobiology of MSC-based cartilage, highlighting positive findings with regards to the furtherance of the chondrogenic phenotype. We likewise discuss the failure of early molecular changes to translate directly into engineered constructs with improved mechanical properties. Finally, we highlight recent work from our group and others that may point to new strategies for enhancing the formation of engineered cartilage based on MSCs.


Asunto(s)
Cartílago/metabolismo , Mecanotransducción Celular , Células Madre Mesenquimatosas/metabolismo , Animales , Cartílago/citología , Diferenciación Celular , Humanos , Células Madre Mesenquimatosas/citología , Ingeniería de Tejidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...