Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Environ Manage ; 321: 115851, 2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-35985269

RESUMEN

In this study, the intensification of a UVC-based PMS activation treatment is performed by a novel photocatalyst. Using ZnO nanoparticles coupled with activated carbon (AC), impregnated by ferroferric oxides (FO, magnetite), as an effective Z-scheme photocatalyst (ZACFO), the effective Bisphenol A (BP-A) removal was attained. Several techniques were applied for the characterization of the as-prepared catalyst and proved the successful preparation of ZACFO. The photocatalytic activity of pristine ZnO was significantly improved after its combination with ACFO. It was found that the fabrication of ZACFO heterostructures could inhibit the charge carriers recombination and also accelerate the charge separation of photo-induced e-/h+ pairs. Under this UVC-based photocatalysis-mediated PMS activation system, ZACFO showed an excellent potential as compared to the single constituent catalysts. The complete degradation of 20 mg/L concentration of BP-A was attained in just 20 min with excellent reaction rate constant of 27.3 × 10-2 min-1. Besides, over 60% of TOC was eliminated by the integrated ZACFO/PMS/UV system within 60 min of reaction. The minor inhibition by most matrix components, the high recycling capability with minor metals' leaching and the effectiveness in complex matrices, constitute this composite method an efficient and promising process for treating real wastewater samples. Finally, based on the photo-produced reactive intermediates and by-products identified, the Z-scheme photocatalytic mechanism and the plausible pathway of BP-A degradation were proposed comprehensively. The presence and role of radical and non-radical pathways in the decontamination process of BP-A over ZACFO/PMS/UV system was confirmed.


Asunto(s)
Carbón Orgánico , Óxido de Zinc , Compuestos de Bencidrilo , Peróxidos/química , Fenoles , Óxido de Zinc/química
2.
Chemosphere ; 297: 134008, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35219713

RESUMEN

The present study developed and evaluated nano-adsorbents based on zirconium oxide and graphene oxide (ZrO2/GO) as a novel adsorbent for the efficient removal of ammonia from industrial effluents. Fourier transform infrared (FTIR) spectroscopy, Field Emission Scanning Electron Microscope, Energy-dispersive X-ray Spectroscopy, and X-ray diffraction were used to evaluate and identify the novel adsorbent in terms of morphology, crystallography, and chemical composition. The pH (7), adsorbent quantities (20 mg), adsorbent contact time (30 min) with the sample, and initial ammonia concentration were all tuned for ammonia uptake. To validate ammonia adsorption on the ZrO2/GO adsorbent, several kinetic models and adsorption isotherms were also utilized. The results showed that the kinetics of ammonia adsorption are of the pseudo-second order due to high R2 (>0.99) value as compared first-order (R2 = 0.52). The chemical behavior and equilibrium isotherm were analyzed using the isotherm models and Langmuir model provided high R2 (>0.98) as compared Freundlich (>0.96). Hence, yielding a maximum uniform equilibrium adsorption capacity of 84.47 mg g-1. The presence of functional groups on the surface of graphene oxide and ZrO2 nanoparticles, which interact efficiently with ammonia species and provide an efficient surface for good ammonia removal, is most likely to be responsible.


Asunto(s)
Grafito , Nanocompuestos , Contaminantes Químicos del Agua , Adsorción , Amoníaco , Grafito/química , Concentración de Iones de Hidrógeno , Cinética , Nanocompuestos/química , Óxidos , Espectroscopía Infrarroja por Transformada de Fourier , Contaminantes Químicos del Agua/análisis , Circonio
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA