Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Methods Cell Biol ; 135: 451-81, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27443940

RESUMEN

The Zebrafish Model Organism Database (ZFIN; zfin.org) serves as the central repository for genetic and genomic data produced using zebrafish (Danio rerio). Data in ZFIN are either manually curated from peer-reviewed publications or submitted directly to ZFIN from various data repositories. Data types currently supported include mutants, transgenic lines, DNA constructs, gene expression, phenotypes, antibodies, morpholinos, TALENs, CRISPRs, disease models, movies, and images. The rapidly changing methods of genomic science have increased the production of data that cannot readily be represented in standard journal publications. These large data sets require web-based presentation. As the central repository for zebrafish research data, it has become increasingly important for ZFIN to provide the zebrafish research community with support for their data sets and guidance on what is required to submit these data to ZFIN. Regardless of their volume, all data that are submitted for inclusion in ZFIN must include a minimum set of information that describes the data. The aim of this chapter is to identify data types that fit into the current ZFIN database and explain how to provide those data in the optimal format for integration. We identify the required and optional data elements, define jargon, and present tools and templates that can help with the acquisition and organization of data as they are being prepared for submission to ZFIN. This information will also appear in the ZFIN wiki, where it will be updated as our services evolve over time.


Asunto(s)
Bases de Datos Genéticas , Genómica/métodos , Pez Cebra/genética , Animales , Animales Modificados Genéticamente , Genoma/genética , Morfolinos/genética , Mutación
2.
Proc Natl Acad Sci U S A ; 97(22): 11722-9, 2000 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-11050201

RESUMEN

Hair cells in many nonmammalian vertebrates are regenerated by the mitotic division of supporting cell progenitors and the differentiation of the resulting progeny into new hair cells and supporting cells. Recent studies have shown that nonmitotic hair cell recovery after aminoglycoside-induced damage can also occur in the vestibular organs. Using hair cell and supporting cell immunocytochemical markers, we have used confocal and electron microscopy to examine the fate of damaged hair cells and the origin of immature hair cells after gentamicin treatment in mitotically blocked cultures of the bullfrog saccule. Extruding and fragmenting hair cells, which undergo apoptotic cell death, are replaced by scar formations. After losing their bundles, sublethally damaged hair cells remain in the sensory epithelium for prolonged periods, acquiring supporting cell-like morphology and immunoreactivity. These modes of damage appear to be mutually exclusive, implying that sublethally damaged hair cells repair their bundles. Transitional cells, coexpressing hair cell and supporting cell markers, are seen near scar formations created by the expansion of neighboring supporting cells. Most of these cells have morphology and immunoreactivity similar to that of sublethally damaged hair cells. Ultrastructural analysis also reveals that most immature hair cells had autophagic vacuoles, implying that they originated from damaged hair cells rather than supporting cells. Some transitional cells are supporting cells participating in scar formations. Supporting cells also decrease in number during hair cell recovery, supporting the conclusion that some supporting cells undergo phenotypic conversion into hair cells without an intervening mitotic event.


Asunto(s)
Células Ciliadas Auditivas/química , Mitosis , Sáculo y Utrículo/citología , Animales , Células Cultivadas , Rana catesbeiana
3.
J Comp Neurol ; 406(3): 415-24, 1999 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-10102505

RESUMEN

Cell surface adhesion molecules are thought to play a necessary role in axon guidance and fasciculation in the developing nervous system. We have studied a potential adhesion molecule using the zn-5 monoclonal antibody, which recognizes the surfaces of zebrafish spinal motoneurons. We show that zn-5 recognizes zebrafish DM-GRASP. DM-GRASP is a cell adhesion molecule of the immunoglobulin superfamily that mediates homophilic adhesion and neurite outgrowth in vitro. It is necessary for correct axon routing and fasciculation in the Drosophila visual system. In zebrafish, primary motoneurons pioneer the peripheral motor nerve pathways, and the axons of secondary motoneurons follow the routes established by the primary motoneuron axons. We show that, of the two classes of zebrafish spinal motoneurons, only the later growing secondary motoneurons express DM-GRASP. The secondary motoneurons restrict DM-GRASP protein to their cell bodies and fasciculated segments of their axons. Expression of DM-GRASP is transient: The protein is present during the period of axonal growth and disappears after axons have reached their muscle targets. Thus, homophilic adhesion mediated by DM-GRASP may play a role in fasciculation of secondary motoneuron axons but not in pathfinding by the pioneer axons of the primary motoneurons or in guidance of secondary motoneuron axons to their targets.


Asunto(s)
Molécula de Adhesión Celular del Leucocito Activado/metabolismo , Axones/metabolismo , Neuronas Motoras/metabolismo , Molécula de Adhesión Celular del Leucocito Activado/genética , Animales , Anticuerpos Monoclonales , Axones/fisiología , ARN Mensajero/metabolismo , Nervios Espinales/citología , Nervios Espinales/metabolismo , Factores de Tiempo , Distribución Tisular/fisiología , Pez Cebra/embriología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...