Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Mol Biol ; 311(1): 205-16, 2001 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-11469869

RESUMEN

The yeast Saccharomyces cerevisiae possesses two methionyl-tRNA synthetases (MetRS), one in the cytoplasm and the other in mitochondria. The cytoplasmic MetRS has a zinc-finger motif of the type Cys-X(2)-Cys-X(9)-Cys-X(2)-Cys in an insertion domain that divides the nucleotide-binding fold into two halves, whereas no such motif is present in the mitochondrial MetRS. Here, we show that tightly bound zinc atom is present in the cytoplasmic MetRS but not in the mitochondrial MetRS. To test whether the presence of a zinc-binding site is required for cytoplasmic functions of MetRS, we constructed a yeast strain in which cytoplasmic MetRS gene was inactivated and the mitochondrial MetRS gene was expressed in the cytoplasm. Provided that methionine-accepting tRNA is overexpressed, this strain was viable, indicating that mitochondrial MetRS was able to aminoacylate tRNA(Met) in the cytoplasm. Site-directed mutagenesis demonstrated that the zinc domain was required for the stability and consequently for the activity of cytoplasmic MetRS. Mitochondrial MetRS, like cytoplasmic MetRS, supported homocysteine editing in vivo in the yeast cytoplasm. Both MetRSs catalyzed homocysteine editing and aminoacylation of coenzyme A in vitro. Thus, identical synthetic and editing functions can be carried out in different structural frameworks of cytoplasmic and mitochondrial MetRSs.


Asunto(s)
Citoplasma/enzimología , Metionina-ARNt Ligasa/química , Metionina-ARNt Ligasa/metabolismo , Mitocondrias/enzimología , Saccharomyces cerevisiae/enzimología , Acilación , Secuencia de Aminoácidos , Sitios de Unión , Coenzima A/metabolismo , Cisteína/genética , Cisteína/metabolismo , Genes Fúngicos/genética , Prueba de Complementación Genética , Homocisteína/genética , Homocisteína/metabolismo , Cinética , Metionina/metabolismo , Metionina-ARNt Ligasa/genética , Datos de Secuencia Molecular , Mutación/genética , Transporte de Proteínas , ARN de Transferencia de Metionina/genética , ARN de Transferencia de Metionina/metabolismo , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/genética , Alineación de Secuencia , Relación Estructura-Actividad , Zinc/metabolismo , Dedos de Zinc/genética , Dedos de Zinc/fisiología
2.
J Biol Chem ; 276(8): 6000-8, 2001 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-11069915

RESUMEN

Eukaryotic aminoacyl-tRNA synthetases, in contrast to their prokaryotic counterparts, are often part of high molecular weight complexes. In yeast, two enzymes, the methionyl- and glutamyl-tRNA synthetases associate in vivo with the tRNA-binding protein Arc1p. To study the assembly and function of this complex, we have reconstituted it in vitro from individually purified recombinant proteins. Our results show that Arc1p can readily bind to either or both of the two enzymes, mediating the formation of the respective binary or ternary complexes. Under competition conditions, Arc1p alone exhibits broad specificity and interacts with a defined set of tRNA species. Nevertheless, the in vitro reconstituted Arc1p-containing enzyme complexes can bind only to their cognate tRNAs and tighter than the corresponding monomeric enzymes. These results demonstrate that the organization of aminoacyl-tRNA synthetases with general tRNA-binding proteins into multimeric complexes can stimulate their catalytic efficiency and, therefore, offer a significant advantage to the eukaryotic cell.


Asunto(s)
Glutamato-ARNt Ligasa/metabolismo , Metionina-ARNt Ligasa/metabolismo , ARN de Transferencia/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteínas de Saccharomyces cerevisiae , Catálisis , Células Eucariotas/enzimología , Evolución Molecular , Sustancias Macromoleculares , Modelos Moleculares , Extensión de la Cadena Peptídica de Translación , Unión Proteica , Conformación Proteica , ARN de Transferencia de Ácido Glutámico/metabolismo , ARN de Transferencia de Metionina/metabolismo , Proteínas Recombinantes/metabolismo , Especificidad por Sustrato , Levaduras
3.
Mol Cell ; 8(6): 1363-73, 2001 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-11779510

RESUMEN

Deletion of elongation factor-like 1 (Efl1p), a cytoplasmic GTPase homologous to the ribosomal translocases EF-G/EF-2, results in nucle(ol)ar pre-rRNA processing and pre-60S subunits export defects. Efl1p interacts genetically with Tif6p, a nucle(ol)ar protein stably associated with pre-60S subunits and required for their synthesis and nuclear exit. In the absence of Efl1p, 50% of Tif6p is relocated to the cytoplasm. In vitro, the GTPase activity of Efl1p is stimulated by 60S, and Efl1p promotes the dissociation of Tif6p-60S complexes. We propose that Tif6p binds to the pre-60S subunits in the nucle(ol)us and escorts them to the cytoplasm where the GTPase activity of Efl1p triggers a late structural rearrangement, which facilitates the release of Tif6p and its recycling to the nucle(ol)us.


Asunto(s)
Nucléolo Celular/metabolismo , Núcleo Celular/metabolismo , Citoplasma/metabolismo , GTP Fosfohidrolasas/metabolismo , Procesamiento Postranscripcional del ARN , Ribosomas/metabolismo , Saccharomyces cerevisiae/metabolismo , Transporte Biológico , División Celular , Secuencia Conservada , Citoplasma/enzimología , Activación Enzimática , GTP Fosfohidrolasas/química , GTP Fosfohidrolasas/genética , Eliminación de Gen , Genes Reporteros/genética , Peso Molecular , Fenotipo , Subunidades de Proteína , Precursores del ARN/química , Precursores del ARN/genética , Precursores del ARN/metabolismo , ARN de Hongos/química , ARN de Hongos/genética , ARN de Hongos/metabolismo , ARN Ribosómico/química , ARN Ribosómico/genética , ARN Ribosómico/metabolismo , Ribosomas/química , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
4.
Mol Cell ; 1(2): 235-42, 1998 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-9659920

RESUMEN

Two yeast enzymes that catalyze aminoacylation of tRNAs, MetRS and GluRS, form a complex with the protein Arc1p. We show here that association of Arc1p with MetRS and GluRS is required in vivo for effective recruitment of the corresponding cognate tRNAs within this complex. Arc1p is linked to MetRS and GluRS through its amino-terminal domain, while its middle and carboxy-terminal parts comprise a novel tRNA-binding domain. This results in high affinity binding of cognate tRNAs and increased aminoacylation efficiency. These findings suggest that Arc1p operates as a mobile, trans-acting tRNA-binding synthetase domain and provide new insight into the role of eukaryotic multimeric synthetase complexes.


Asunto(s)
Aminoacil-ARNt Sintetasas/metabolismo , Secuencia Conservada , Proteínas Fúngicas/química , Proteínas de Unión al ARN/química , Proteínas de Saccharomyces cerevisiae , Levaduras/enzimología , Sitios de Unión/fisiología , Proteínas Fúngicas/genética , Prueba de Complementación Genética , Complejos Multienzimáticos/metabolismo , Mutagénesis/fisiología , Estructura Terciaria de Proteína , ARN de Transferencia de Ácido Glutámico/metabolismo , ARN de Transferencia de Metionina/metabolismo , Proteínas de Unión al ARN/genética , Levaduras/química , Levaduras/genética
5.
RNA ; 3(8): 893-904, 1997 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-9257648

RESUMEN

The contribution of the ribose 2'-hydroxyls to RNA structure and function has been analyzed, but still remains controversial. In this work, we report the use of a mutant T7 RNA polymerase as a tool in RNA studies, applied to the aspartate and methionine tRNA aminoacylation systems from yeast. Our approach consists of determining the effect of substituting natural ribonucleotides by deoxyribonucleotides in RNA and, thereby, defining the subset of important 2'-hydroxyl groups. We show that deoxyribose-containing RNA can be folded in a global conformation similar to that of natural RNA. Melting curves of tRNAs, obtained by temperature-gradient gel electrophoresis, indicate that in deoxyribo-containing molecules, the thermal stability of the tertiary network drops down, whereas the stability of the secondary structure remains unaltered. Nuclease footprinting reveals a significant increase in the accessibility of both single- and double-stranded regions. As to the functionality of the deoxyribose-containing tRNAs, their in vitro aminoacylation efficiency indicates striking differential effects depending upon the nature of the substituted ribonucleotides. Strongest decrease in charging occurs for yeast initiator tRNA(Met) transcripts containing dG or dC residues and for yeast tRNA(Asp) transcripts with dU or dG. In the aspartate system, the decreased aminoacylation capacities can be correlated with the substitution of the ribose moieties of U11 and G27, disrupting two hydrogen bond contacts with the synthetase. Altogether, this suggests that specific 2'-hydroxyl groups in tRNAs can act as determinants specifying aminoacylation identity.


Asunto(s)
Desoxirribonucleótidos/metabolismo , ARN de Transferencia/química , ARN de Transferencia/metabolismo , Transcripción Genética , Secuencia de Bases , ARN Polimerasas Dirigidas por ADN/genética , ARN Polimerasas Dirigidas por ADN/metabolismo , Desoxirribonucleótidos/química , Modelos Moleculares , Datos de Secuencia Molecular , Mutación , Conformación de Ácido Nucleico , ARN de Transferencia/genética , ARN de Transferencia de Aspártico/química , ARN de Transferencia de Aspártico/genética , ARN de Transferencia de Aspártico/metabolismo , ARN de Transferencia de Metionina/química , ARN de Transferencia de Metionina/genética , ARN de Transferencia de Metionina/metabolismo , Relación Estructura-Actividad , Proteínas Virales
6.
Biochemistry ; 36(27): 8269-75, 1997 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-9204872

RESUMEN

Earlier work by two independent groups has established the fact that anticodons GAU and LAU of Escherichia coli tRNAIle isoacceptors play a critical role in the tRNA identity. Yeast possesses two isoleucine transfer RNAs, a major one with anticodon IAU and a minor one with anticodon PsiAPsi which are derived from the post-transcriptional modification of AAU and UAU gene sequences, respectively. We present direct evidence which reveals that inosine is a positive determinant for yeast isoleucyl-tRNA synthetase. We also show that yeast tRNAMet with guanosine at the wobble position becomes aminoacylated with isoleucine while methionine acceptance is lost. As inosine and guanosine share the 6-keto and the N-1 hydrogen groups, this suggests that these hydrogen donor and acceptor groups are determinants for isoleucine specificity. The role of the minor tRNAIle anticodon pseudouridines in tRNA isoleucylation could not be tested directly but was deduced from a 40-fold decrease in the activity of the unmodified transcript. The presence of the NHCO structure in guanosine, inosine, pseudouridine, and lysidine suggests a unifying model of wobble base recognition by the yeast and E. coli isoleucyl-tRNA synthetase. In contrast to lysidine which switches the identity of the tRNA from methionine to isoleucine [Muramatsu, T., Nishikawa, K., Nemoto, F., Kuchino, Y., Nishimura, S., Miyazawa, T., & Yokoyama, S. (1988) Nature 336, 179-181], pseudouridine-34 does not modify the specificity of the yeast minor tRNAIle since U-34 is a strong negative determinant for yeast MetRS. Therefore, the major role of Psi-34 (in combination with Psi-36 or not) is likely in isoleucine AUA codon specificity and translational fidelity.


Asunto(s)
Inosina/química , Isoleucina-ARNt Ligasa/metabolismo , ARN de Transferencia de Isoleucina/química , Saccharomyces cerevisiae/genética , Acilación , Anticodón , Secuencia de Bases , Escherichia coli/genética , Inosina/metabolismo , Datos de Secuencia Molecular , Conformación de Ácido Nucleico , Seudouridina/química , Seudouridina/metabolismo , ARN Bacteriano/química , ARN Bacteriano/metabolismo , ARN de Hongos/química , ARN de Hongos/metabolismo , ARN de Transferencia de Isoleucina/metabolismo , Relación Estructura-Actividad , Especificidad por Sustrato
7.
Biochimie ; 79(5): 293-302, 1997 May.
Artículo en Inglés | MEDLINE | ID: mdl-9258438

RESUMEN

In eukaryotic cells, especially in yeast, several genes encoding tRNAs contain introns. These are removed from pre-tRNAs during the maturation process by a tRNA-specific splicing machinery that is located within the nucleus at the nuclear envelope. Before and after the intron removal, several nucleoside modifications are added in a stepwise manner, but most of them are introduced prior to intron removal. Some of these early nucleoside modifications are catalyzed by intron-dependent enzymes while most of the others are catalyzed in an intron-independent manner. In the present paper, we review all known cases where the nucleoside modifications were shown to depend strictly on the presence of an intron. These are pseudouridines at anticodon positions 34, 35 and 36 and 5-methylcytosine at position 34 of several eukaryotic tRNAs. One common property of the corresponding intron-dependent modifying enzymes is that their activities are essentially dependent on the local specific architecture of the pre-tRNA molecule that comprises the anticodon stem and loop prolonged by the intron domain. Thus introns clearly serve as internal (cis-type) RNAs that guide nucleoside modifications by providing transient target sites in tRNA for selected nuclear modifying enzymes. This situation may be similar to the recently discovered (trans-type) snoRNA-guided process of ribose methylations of ribosomal RNAs within the nucleolus of eukaryotic cells.


Asunto(s)
Intrones , Nucleósidos/metabolismo , Procesamiento Postranscripcional del ARN , ARN de Transferencia/metabolismo , ARNt Metiltransferasas/metabolismo , Animales , Secuencia de Bases , Células Eucariotas , Datos de Secuencia Molecular , ARN de Transferencia/genética
8.
RNA ; 3(5): 489-97, 1997 May.
Artículo en Inglés | MEDLINE | ID: mdl-9149230

RESUMEN

We showed previously that the tRNA tertiary structure makes an important contribution to the identity of yeast tRNA(Met) (Senger B, Aphasizhev R, Walter P, Fasiolo F, 1995, J Mol Biol 249:45-58). To learn more about the role played by the tRNA framework, we analyzed the effect of some phosphodiester cleavages and 2'OH groups in tRNA binding and aminoacylation. The tRNA is inactivated provided the break occurs in the central core region responsible for the tertiary fold or in the anticodon stem/loop region. We also show that, for tRNA(Met) to bind, the anticodon loop, but not the anticodon stem, requires a ribosephosphate backbone. A tertiary mutant of yeast tRNA(Met) involving interactions from the D- and T-loop unique to the initiator species fails to be aminoacylated, but still binds to yeast methionyl-tRNA synthetase. In the presence of 10 mM MgCl2, the mutant transcript has a 3D fold significantly stabilized by about 30 degrees C over a wild-type transcript as deduced from the measure of their T(m) values. The k(cat) defect of the tRNA(Met) mutant may arise from a failure to overcome an increase of the free energetic cost of distorting the more stable tRNA structure and/or a tRNA based MetRS conformational change required for formation of transition state of aminoacylation.


Asunto(s)
Conformación de Ácido Nucleico , ARN de Transferencia de Metionina/biosíntesis , ARN de Transferencia de Metionina/química , Anticodón , Secuencia de Bases , Electroforesis en Gel de Poliacrilamida , Variación Genética , Cinética , Cloruro de Magnesio , Modelos Estructurales , Datos de Secuencia Molecular , ARN de Transferencia de Metionina/aislamiento & purificación , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Transcripción Genética
9.
EMBO J ; 15(19): 5437-48, 1996 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-8895587

RESUMEN

Arc1p was found in a screen for components that interact genetically with Los1p, a nuclear pore-associated yeast protein involved in tRNA biogenesis. Arc1p is associated with two proteins which were identified as methionyl-tRNA and glutamyl-tRNA synthetase (MetRS and GluRS) by a new mass spectrometry method. ARC1 gene disruption leads to slow growth and reduced MetRS activity, and synthetically lethal arc1- mutants are complemented by the genes for MetRS and GluRS. Recombinant Arc1p binds in vitro to purified monomeric yeast MetRS, but not to an N-terminal truncated form, and strongly increases its apparent affinity for tRNAMet. Furthermore, Arc1p, which is allelic to the quadruplex nucleic acid binding protein G4p1, exhibits specific binding to tRNA as determined by gel retardation and UV-cross-linking. Arc1p is, therefore, a yeast protein with dual specificity: it associates with tRNA and aminoacyl-tRNA synthetases. This functional interaction may be required for efficient aminoacylation in vivo.


Asunto(s)
Glutamato-ARNt Ligasa/metabolismo , Metionina-ARNt Ligasa/metabolismo , ARN de Transferencia/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteínas de Saccharomyces cerevisiae , Levaduras/genética , Acilación , Secuencia de Aminoácidos , Citoplasma/química , Genes Fúngicos/genética , Cinética , Proteínas de la Membrana/metabolismo , Datos de Secuencia Molecular , Mutación , Membrana Nuclear/metabolismo , Proteínas de Unión al ARN/análisis , Proteínas de Unión al ARN/genética , Proteínas Recombinantes de Fusión/metabolismo , Homología de Secuencia de Aminoácido , Levaduras/enzimología , Levaduras/crecimiento & desarrollo
10.
Biochemistry ; 35(1): 117-23, 1996 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-8555164

RESUMEN

We previously showed that yeast mitochondrial phenylalanyl-tRNA synthetase (MSF protein) is evolutionarily distant to the cytoplasmic counterpart based on a high degree of divergence in protein sequence, molecular mass, and quaternary structure. Using yeast cytoplasmic tRNA(Phe) which is efficiently aminoacylated by MSF protein, we report here the tRNA(Phe) primary site of aminoacylation and the identity determinants for MSF protein. As for the cytoplasmic phenylalanyl-tRNA synthetase (Sampson, J. R., Di Renzo, A. B., Behlen, L. S., & Uhlenbeck, O. C. (1989) Science 243, 1363-1366), MSF protein recognizes nucleotides from the anticodon and the acceptor end including base A73 and, as shown here, adjacent G1-C72 base pair or at least C72 base. This indicates that the way of tRNA(Phe) binding for the two phenylalanine enzymes is conserved in evolution. However, tRNA(Phe) tertiary structure seems more critical for the interaction with the cytoplasmic enzyme than with MSF protein, and unlike cytoplasmic phenylalanyl-tRNA synthetase, the small size of the monomeric MSF protein probably does not allow contacts with residue 20 at the top corner of the L molecule. We also show that MSF protein preferentially aminoacylates the terminal 2'-OH group of tRNA(Phe) but with a catalytic efficiency for tRNA(Phe)-CC-3'-deoxyadenosine reduced 100-fold from that of native tRNA(Phe), suggesting a role of the terminal 3'-OH in catalysis. The loss is only 1.5-fold when tRNA(Phe)-CC-3'-deoxyadenosine is aminoacylated by yeast cytoplasmic PheRS (Sprinzl, M., & Cramer, F. (1973) Nature 245, 3-5), indicating mechanistic differences between the two PheRS's active sites for the amino acid transfer step.


Asunto(s)
Evolución Biológica , Conformación de Ácido Nucleico , Fenilalanina-ARNt Ligasa/química , Fenilalanina-ARNt Ligasa/metabolismo , ARN de Transferencia de Fenilalanina/química , ARN de Transferencia de Fenilalanina/metabolismo , Secuencia de Aminoácidos , Secuencia de Bases , Sitios de Unión , Secuencia Conservada , Escherichia coli/genética , Variación Genética , Humanos , Cinética , Sustancias Macromoleculares , Mitocondrias/enzimología , Datos de Secuencia Molecular , Peso Molecular , Fenilalanina-ARNt Ligasa/genética , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética , Homología de Secuencia de Ácido Nucleico , Especificidad por Sustrato
11.
Biochimie ; 78(7): 597-604, 1996.
Artículo en Inglés | MEDLINE | ID: mdl-8955903

RESUMEN

The primordial role of the CAU anticodon in methionine identity of the tRNA has been established by others nearly a decade ago in Escherichia coli and yeast tRNA(Met). We show here that the CAU triplet alone is unable to confer methionine acceptance to a tRNA. This requires the contribution of the discriminatory base A73 and the non-anticodon bases of the anticodon loop. To better understand the functional communication between the anticodon and the active site, we analysed the binding and aminoacylation of tRNA(Met) based anticodon and acceptor-stem minihelices and of tRNA(Met) chimeras where the central core region of yeast tRNA(Met) is replaced by that of unusual mitochondrial forms lacking either a D-stem or a T-stem. These studies suggest that the high selectivity of the anticodon bases in tRNA(Met) implies the L-conformation of the tRNA and the presence of a D-stem. The importance of a L-structure for recognition of tRNA(Met) was also deduced from mutations of tertiary interactions known to play a general role in tRNA(Met) folding.


Asunto(s)
Metionina-ARNt Ligasa/metabolismo , ARN de Transferencia de Metionina/metabolismo , Secuencia de Aminoácidos , Anticodón , Datos de Secuencia Molecular , Conformación de Ácido Nucleico , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Relación Estructura-Actividad
12.
J Mol Biol ; 249(1): 45-58, 1995 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-7776375

RESUMEN

Dissection of the yeast cytoplasmic initiator tRNA(Met) into two helical domains, the T psi C acceptor and anticodon minihelices, failed to show anminoacylation and binding of the acceptor minihelix by the yeast methionyl-tRNA synthetase (MetRS) even in the presence of the anticodon minihelix. In contrast, based on the measure of the inhibition constant Ki, the anticodon minihelix carrying the methionine anticodon CAU is specifically bound to the synthetase and with an affinity comparable to that of the full-length tRNA. The yeast tRNA(Met) acceptor and anticodon minihelices were covalently linked using the central core sequences of either bovine mitochondrial tRNA(Ser) (AGY) lacking a D-stem or initiator tRNA(Met) from Caenorhabditis elegans lacking a T-stem. Based on modeling studies of analogous constructs performed by others, we assume that the folding and distance between the anticodon and acceptor ends of these hybrid tRNAs are identical to that of canonical tRNA. The three-quarter molecule, which includes the T-stem, has aminoacylation activity significantly more than an acceptor minihelix, while the acceptor stem/anticodon-D stem biloop has near wild-type aminoacylation activity. These results suggest that the high selectivity of the anticodon bases in tRNA(Met) depends upon the tRNA L-shape conformation and the presence of a D-arm. Protein contacts with the D-arm phosphate backbone are required for connecting anticodon recognition with the active site. These interactions probably contribute to fine tune the position of the acceptor end in the active site, allowing entry into the transition state of aminoacylation upon anticodon binding. The importance of an L structure for recognition of tRNA(Met) by yeast MetRS was also deduced from mutations of tertiary interactions known to play a general role in tRNA folding.


Asunto(s)
ARN de Transferencia de Metionina/metabolismo , Saccharomyces cerevisiae/metabolismo , Acilación , Animales , Anticodón/metabolismo , Secuencia de Bases , Caenorhabditis elegans , Bovinos , Datos de Secuencia Molecular , Estructura Molecular , Mutación , ARN de Transferencia de Metionina/química , ARN de Transferencia de Metionina/genética
13.
EMBO J ; 13(19): 4636-44, 1994 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-7925304

RESUMEN

We have isolated and sequenced the minor species of tRNA(Ile) from Saccharomyces cerevisiae. This tRNA contains two unusual pseudouridines (psi s) in the first and third positions of the anticodon. As shown earlier by others, this tRNA derives from two genes having an identical 60 nt intron. We used in vitro procedures to study the structural requirements for the conversion of the anticodon uridines to psi 34 and psi 36. We show here that psi 34/psi 36 modifications require the presence of the pre-tRNA(Ile) intron but are not dependent upon the particular base at any single position of the anticodon. The conversion of U34 to psi 34 occurs independently from psi 36 synthesis and vice versa. However, psi 34 is not formed when the middle and the third anticodon bases of pre-tRNA(Ile) are both substituted to yield ochre anticodon UUA. This ochre pre-tRNA(Ile) mutant has the central anticodon uridine modified to psi 35 as is the case for S.cerevisiae SUP6 tyrosine-inserting ochre suppressor tRNA. In contrast, neither the first nor the third anticodon pseudouridine is formed, when the ochre (UUA) anticodon in the pre-tRNA(Tyr) is substituted with the isoleucine UAU anticodon. A synthetic mini-substrate consisting of the anticodon stem and loop and the wild-type intron of pre-tRNA(Ile) is sufficient to fully modify the anticodon U34 and U36 into psi s. This is the first example of the tRNA intron sequence, rather than the whole tRNA or pre-tRNA domain, being the main determinant of nucleoside modification.


Asunto(s)
Anticodón/metabolismo , Intrones/fisiología , Seudouridina/biosíntesis , ARN de Hongos/metabolismo , ARN de Transferencia de Isoleucina/metabolismo , Saccharomyces cerevisiae/genética , Secuencia de Bases , Datos de Secuencia Molecular , Conformación de Ácido Nucleico , Procesamiento Postranscripcional del ARN/fisiología
14.
Biochem Biophys Res Commun ; 200(1): 370-7, 1994 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-8166708

RESUMEN

The artificial amber suppressor corresponding to the major isoleucine tRNA from yeast (pVBt5), when expressed in E. coli, is a poor suppressor of the amber mutation lacIam181-Z. By analysing mutant forms, we could show that this was due to the presence of a U30-G40 wobble pair in the anticodon stem of the yeast tRNA and not to the level of the heterologously expressed tRNA. Efficient suppressors were obtained by restoring a normal U30-A40 or G30-C40 Watson-Crick pair. In vivo the mutant forms are exclusively charged by the bacterial lysyl-tRNA synthetase (LysRS), whereas the original yeast amber tRNA is charged at a low level by E. coli glutaminyl-tRNA synthetase (GlnRS) and LysRS. The inversion of the U30-G40 pair also induces a loss of the Gln identity. We conclude from these experiments that the U30-G40 base pair constitutes a negative determinant for LysRS interaction which operates either at the level of complex formation or at the catalytic step. As no direct contacts are seen between GlnRS and positions 30-40 of the complexed homologous tRNA, the U30-G40 pair of pVBt5 is believed to influence aminoacylation by GlnRS indirectly, probably at the level of the anticodon loop conformation by favouring an optimal apposition of the anticodon nucleotides with the protein.


Asunto(s)
Anticodón/genética , Escherichia coli/genética , ARN de Transferencia de Isoleucina/genética , ARN de Transferencia de Lisina/genética , Saccharomyces cerevisiae/genética , Supresión Genética , Aminoacil-ARNt Sintetasas/metabolismo , Composición de Base , Secuencia de Bases , Inversión Cromosómica , Cromosomas Artificiales de Levadura , Genes Bacterianos , Guanina , Lisina-ARNt Ligasa/metabolismo , Datos de Secuencia Molecular , Mutagénesis , Conformación de Ácido Nucleico , Plásmidos , ARN de Transferencia de Glutamina/química , ARN de Transferencia de Glutamina/genética , ARN de Transferencia de Isoleucina/química , ARN de Transferencia de Lisina/química , Tetrahidrofolato Deshidrogenasa/biosíntesis , Tetrahidrofolato Deshidrogenasa/genética , Tetrahidrofolato Deshidrogenasa/aislamiento & purificación , Uracilo
15.
Proc Natl Acad Sci U S A ; 89(22): 10768-71, 1992 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-1438273

RESUMEN

Previous work suggested that the presence of the anticodon CAU alone was enough to confer methionine acceptance to a tRNA. Conversions of Escherichia coli nonmethionine tRNAs to a methionine-accepting species were obtained by substitutions reconstructing the whole methionine anticodon loop together with preservation (or introduction) of the acceptor stem base A73. We show here that the CAU triplet alone is unable to confer methionine acceptance when transplanted into a yeast aspartic tRNA. Both non-anticodon bases of the anticodon loop of yeast tRNA(Met) and A73 are required in addition to CAU for methionine acceptance. The importance of these non-anticodon bases in other CAU-containing tRNA frameworks was also established. These specific non-anticodon base interactions make a substantial thermodynamic contribution to the methionine acceptance of a transfer RNA.


Asunto(s)
Anticodón/metabolismo , Metionina/metabolismo , ARN de Transferencia de Metionina/metabolismo , Saccharomyces cerevisiae/genética , Anticodón/genética , Secuencia de Bases , Cinética , Modelos Estructurales , Datos de Secuencia Molecular , Conformación de Ácido Nucleico , ARN de Transferencia de Metionina/genética , Transcripción Genética
16.
J Mol Biol ; 225(3): 897-907, 1992 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-1602489

RESUMEN

As for Escherichia coli methionine tRNAs, the anticodon triplet of yeast tRNA(Met) plays an important role in the recognition by the yeast methionyl-tRNA synthetase (MetRS), indicating that this determinant for methionine identity is conserved in yeast. Efficient aminoacylation of the E. coli tRNA(Met) transcript by the heterologous yeast methionine enzyme also suggests conservation of the protein determinants that interact with the CAU anticodon sequence. We have analysed by site-directed mutagenesis the peptide region 655 to 663 of the yeast MetRS that is equivalent to the anticodon binding region of the E. coli methionine enzyme. Only one change, converting Leu658 into Ala significantly reduced tRNA aminoacylation. Semi-conservative substitutions of L658 allow a correlation to be drawn between side-chain volume of the hydrophobic residue at this site and activity. The analysis of the L658A mutant shows that Km is mainly affected. This suggests that the peptide region 655 to 663 contributes partially to the binding of the anticodon, since separate mutational analysis of the anticodon bases shows that kcat is the most critical parameter in the recognition of tRNA(Met) by the yeast synthetase. We have analysed the role of peptide region (583-GNLVNR-588) that is spatially close to the region 655 to 663. Replacements of residues N584 and R588 reduces significantly the kcat of aminoacylation. The peptide region 583-GNLVNR-588 is highly conserved in all MetRS so far sequenced. We therefore propose that the hydrogen donor/acceptor amino acid residues within this region are the most critical protein determinants for the positive selection of the methionine tRNAs.


Asunto(s)
Anticodón/metabolismo , Metionina-ARNt Ligasa/metabolismo , ARN de Transferencia de Metionina/metabolismo , Secuencia de Aminoácidos , Sitios de Unión , Cinética , Modelos Moleculares , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Conformación Proteica , Saccharomyces cerevisiae/enzimología , Relación Estructura-Actividad
17.
Mol Gen Genet ; 231(1): 7-16, 1991 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-1753946

RESUMEN

The URA7 gene of Saccharomyces cerevisiae encodes CTP synthetase (EC 6.3.4.2) which catalyses the conversion of uridine 5'-triphosphate to cytidine 5'-triphosphate, the last step of the pyrimidine biosynthetic pathway. We have cloned and sequenced the URA7 gene. The coding region is 1710 bp long and the deduced protein sequence shows a strong degree of homology with bacterial and human CTP synthetases. Gene disruption shows that URA7 is not an essential gene: the level of the intracellular CTP pool is roughly the same in the deleted and the wild-type strains, suggesting that an alternative pathway for CTP synthesis exists in yeast. This could involve either a divergent duplicated gene or a different route beginning with the amination of uridine mono- or diphosphate.


Asunto(s)
Ligasas de Carbono-Nitrógeno , Proteínas Fúngicas/genética , Ligasas/genética , Saccharomyces cerevisiae/genética , Secuencia de Aminoácidos , Secuencia de Bases , Northern Blotting , Southern Blotting , Cromatografía Líquida de Alta Presión , Clonación Molecular , Ligasas/metabolismo , Datos de Secuencia Molecular , Mapeo Restrictivo , Saccharomyces cerevisiae/enzimología , Alineación de Secuencia
18.
Proc Natl Acad Sci U S A ; 88(19): 8387-91, 1991 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-1924298

RESUMEN

Phenylalanyl-tRNA synthetases [L-phenylalanine:tRNAPhe ligase (AMP-forming), EC 6.1.1.20] from Escherichia coli, yeast cytoplasm, and mammalian cytoplasm have an unusual conserved alpha 2 beta 2 quaternary structure that is shared by only one other aminoacyl-tRNA synthetase. Both subunits are required for activity. We show here that a single mitochondrial polypeptide from Saccharomyces cerevisiae is an active phenylalanyl-tRNA synthetase. This protein (the MSF1 gene product) is active as a monomer. It has all three characteristic sequence motifs of the class II aminoacyl-tRNA synthetases, and its activity may result from the recruitment of additional sequences into an alpha-subunit-like structure.


Asunto(s)
Fenilalanina-ARNt Ligasa/genética , Saccharomyces cerevisiae/enzimología , Secuencia de Aminoácidos , Secuencia de Bases , Evolución Biológica , Análisis Mutacional de ADN , Escherichia coli/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/ultraestructura , Genes Fúngicos , Cinética , Mitocondrias/enzimología , Datos de Secuencia Molecular , Oligonucleótidos/química , Fenilalanina-ARNt Ligasa/metabolismo , Fenilalanina-ARNt Ligasa/ultraestructura , Conformación Proteica , Proteínas Recombinantes de Fusión/metabolismo , Mapeo Restrictivo , Alineación de Secuencia , Relación Estructura-Actividad , Especificidad por Sustrato
19.
FEBS Lett ; 289(2): 217-20, 1991 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-1915850

RESUMEN

Sequence comparisons among methionyl-tRNA synthetases from different organisms reveal only one block of homology beyond the last beta strand of the mononucleotide fold. We have introduced a series of semi-conservative amino acid replacements in the conserved motif of yeast methionyl-tRNA synthetase. The results indicate that replacements of two polar residues (Asn584 and Arg588) affected specifically the aminoacylation reaction. The location of these residues in the tertiary structure of the enzyme is compatible with a direct interaction of the amino acid side-chains with the tRNA anticodon.


Asunto(s)
Anticodón , Metionina-ARNt Ligasa/genética , Saccharomyces cerevisiae/enzimología , Secuencia de Aminoácidos , Escherichia coli/genética , Cinética , Metionina-ARNt Ligasa/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Plásmidos , Conformación Proteica , Mapeo Restrictivo , Saccharomyces cerevisiae/genética , Homología de Secuencia de Ácido Nucleico
20.
Biochemistry ; 30(9): 2448-53, 1991 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-1900433

RESUMEN

Modified lysines resulting from the cross-linking of the 3' end of tRNA(Phe) to yeast phenylalanyl-tRNA synthetase (an enzyme with an alpha 2 beta 2 structure) have been characterized by sequencing the labeled chymotryptic peptides that were isolated by means of gel filtration and reversed-phase chromatography. The analysis showed that Lys131 and Lys436 in the alpha subunit are the target sites of periodate-oxidized tRNA(Phe). Mutant protein with a Lys----Asn substitution established that each lysine contributes to the binding of the tRNA but is not essential for catalysis. The major labeled lysine (K131) belongs to the sequence IALQDKL (residues 126-132), which shares three identities with the peptide sequence ADKL found around the tRNAox-labeled Lys61 in the large subunit of Escherichia coli phenylalanyl-tRNA synthetase [Hountondji, C., Schmitter, J. M., Beauvallet, C., & Blanquet, S. (1987) Biochemistry 26, 5433-5439].


Asunto(s)
Escherichia coli/enzimología , Fenilalanina-ARNt Ligasa/metabolismo , ARN de Transferencia de Fenilalanina/metabolismo , Saccharomyces cerevisiae/enzimología , Secuencia de Aminoácidos , Asparagina , Cromatografía en Gel , Cromatografía Líquida de Alta Presión , Escherichia coli/genética , Cinética , Lisina , Sustancias Macromoleculares , Mutagénesis Sitio-Dirigida , Oxidación-Reducción , Fragmentos de Péptidos/aislamiento & purificación , Fenilalanina-ARNt Ligasa/genética , Saccharomyces cerevisiae/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA