Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Clin Transl Radiat Oncol ; 45: 100744, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38406645

RESUMEN

Background: MRI-guidance may aid better discrimination between Organs at Risk (OARs) and target volumes in proximity of the mediastinum. We report the first clinical experiences with Stereotactic Body Radiotherapy (SBRT) of (ultra)central lung tumours on a 1.5 T MR-linac. Materials and Methods: Patients with an (ultra)central lung tumour were selected for MR-linac based SBRT treatment. A T2-weighted 3D sequence MRI acquired during free breathing was used for daily plan adaption. Prior to each fraction, contours of Internal Target Volume (ITV) and OARs were deformably propagated and amended by a radiation oncologist. Inter-fractional changes in volumes and coverage of target volumes as well as doses in OARs were evaluated in offline and online treatment plans. Results: Ten patients were treated and completed 60 Gy in 8 or 12 fractions. In total 104 fractions were delivered. The median time in the treatment room was 41 min with a median beam-on time of 8.9 min. No grade ≥3 acute toxicity was observed. In two patients, the ITV significantly decreased during treatment (58 % and 37 %, respectively) due to tumour shrinkage. In the other patients, 81 % of online ITVs were within ±15 % of the volume of fraction 1. Comparison with the pre-treatment plan showed that ITV coverage of the online plan was similar in 52 % and improved in 34 % of cases. Adaptation to meet OAR constraints, led to decreased ITV coverage in 14 %. Conclusions: We describe the workflow for MR-guided Radiotherapy and the feasibility of using 1.5 T MR-linac for SBRT of (ultra) central lung tumours.

2.
Phys Med Biol ; 67(6)2022 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-35189610

RESUMEN

Objective.Stereotactic arrhythmia radioablation (STAR) is a novel, non-invasive treatment for refractory ventricular tachycardia (VT). The VT isthmus is subject to both respiratory and cardiac motion. Rapid cardiac motion presents a unique challenge. In this study, we provide first experimental evidence for real-time cardiorespiratory motion-mitigated MRI-guided STAR on the 1.5 T Unity MR-linac (Elekta AB, Stockholm, Sweden) aimed at simultaneously compensating cardiac and respiratory motions.Approach.A real-time cardiorespiratory motion-mitigated radiotherapy workflow was developed on the Unity MR-linac in research mode. A 15-beam intensity-modulated radiation therapy treatment plan (1 × 25 Gy) was created in Monaco v.5.40.01 (Elekta AB) for the Quasar MRI4Dphantom (ModusQA, London, ON). A film dosimetry insert was moved by combining either artificial (cos4, 70 bpm, 10 mm peak-to-peak) or subject-derived (59 average bpm, 15.3 mm peak-to-peak) cardiac motion with respiratory (sin, 12 bpm, 20 mm peak-to-peak) motion. A balanced 2D cine MRI sequence (13 Hz, field-of-view = 400 × 207 mm2, resolution = 3 × 3 × 15 mm3) was developed to estimate cardiorespiratory motion. Cardiorespiratory motion was estimated by rigid registration and then deconvoluted into cardiac and respiratory components. For beam gating, the cardiac component was used, whereas the respiratory component was used for MLC-tracking. In-silico dose accumulation experiments were performed on three patient data sets to simulate the dosimetric effect of cardiac motion on VT targets.Main results.Experimentally, a duty cycle of 57% was achieved when simultaneously applying respiratory MLC-tracking and cardiac gating. Using film, excellent agreement was observed compared to a static reference delivery, resulting in a 1%/1 mm gamma pass rate of 99%. The end-to-end gating latency was 126 ms on the Unity MR-linac. Simulations showed that cardiac motion decreased the target's D98% dose between 0.1 and 1.3 Gy, with gating providing effective mitigation.Significance.Real-time MRI-guided cardiorespiratory motion management greatly reduces motion-induced dosimetric uncertainty and warrants further research and development for potential future use in STAR.


Asunto(s)
Imagenología Tridimensional , Taquicardia Ventricular , Arritmias Cardíacas , Corazón/diagnóstico por imagen , Humanos , Imagen por Resonancia Magnética , Movimiento (Física)
3.
Phys Med Biol ; 66(9)2021 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-33827065

RESUMEN

4D-MRI is becoming increasingly important for daily guidance of thoracic and abdominal radiotherapy. This study exploits the simultaneous multi-slice (SMS) technique to accelerate the acquisition of a balanced turbo field echo (bTFE) and a turbo spin echo (TSE) coronal 4D-MRI sequence performed on 1.5 T MRI scanners. SMS single-shot bTFE and TSE sequences were developed to acquire a stack of 52 coronal 2D images over 30 dynamics. Simultaneously excited slices were separated by half the field of view. Slices intersecting with the liver-lung interface were used as navigator slices. For each navigator slice location, an end-exhale dynamic was automatically identified, and used to derive the self-sorting signal by rigidly registering the remaining dynamics. Navigator slices were sorted into 10 amplitude bins, and the temporal relationship of simultaneously excited slices was used to generate sorted 4D-MRIs for 12 healthy volunteers. The self-sorting signal was validated using anin vivopeak-to-peak motion analysis. The smoothness of the liver-lung interface was quantified by comparing to sagittal cine images acquired directly after the SMS-4D-MRI sequence. To ensure compatibility with the MR-linac radiotherapy workflow, the 4D-MRIs were transformed into 3D mid-position (MidP) images using deformable image registration. Consistency of the deformable vector fields was quantified in terms of the distance discordance metric (DDM) in the body. The SMS-4D-TSE sequence was additionally acquired for 3 lung cancer patients to investigate tumor visibility. SMS-4D-MRI acquisition and processing took approximately 7 min. 4D-MRI reconstruction was possible for 26 out of 27 acquired datasets. Missing data in the sorted 4D-MRIs varied from 4%-26% for the volunteers and varied from 8%-24% for the patients. Peak-to-peak (SD) amplitudes analysis agreed within 1.8 (1.1) mm and 0.9 (0.4) mm between the sorted 4D-MRIs and the self-sorting signals of the volunteers and patients, respectively. Liver-lung interface smoothness was found to be in the range of 0.6-3.1 mm for volunteers. The percentage of DDM values smaller than 2 mm was in the range of 85%-89% and 86%-92% for the volunteers and patients, respectively. Lung tumors were clearly visibility in the SMS-4D-TSE images and MidP images. Two fast SMS-accelerated 4D-MRI sequences were developed resulting in T2/T1or T2weighted contrast. The SMS-4D-MRIs and derived 3D MidP-MRIs yielded anatomically plausible images and good tumor visibility. SMS-4D-MRI is therefore a strong candidate to be used for treatment simulation and daily guidance of thoracic and abdominal MR-guided radiotherapy.


Asunto(s)
Imagen por Resonancia Magnética , Humanos , Imagenología Tridimensional , Neoplasias Hepáticas , Movimiento (Física) , Aceleradores de Partículas
4.
Radiother Oncol ; 138: 132-140, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31252295

RESUMEN

BACKGROUND & PURPOSE: To propose a novel mid-position (midP) workflow for MRI-guided liver SBRT and provide a validation of the required midP-MRI generation and registration steps. MATERIALS & METHODS: The first step of the midP workflow is the generation of a simulation midP-MRI from a 4D-MRI scan using deformable image registration. Next, a planning midP-CT is warped to the midP-MRI to enable planning in the midP-MRI anatomy. For daily MRI-guidance, three different registration methods to the simulation midP-MRI are proposed; (1) 4D rigid registration of all phases of the daily 4D-MRI, (2) 3D rigid registration of the daily midP-MRI, and (3) 3D deformable registration of the daily midP-MRI. The midP-MRI image quality was assessed with respect to 4D-MRI acquisition time, which is related to over-sampling of the data acquisition (i.e. number of dynamics). The deformable registration precision for the midP-MRI generation was validated using the distance discordance metric (DDM). The deformable CT-MRI and daily MRI-MRI registration accuracies were quantified using the 'full circle method'. RESULTS: The DDM was 1.5 mm (median) within the liver, independent of the number of dynamics. The root-mean-squared difference between midP-MRIs based on 10 and 60 dynamics was only 5.2%. The full circle CT-MRI deformable registration error had a median 3D vector length of 1.8 mm in the liver. The daily MRI-MRI registration error was submillimeter for all three evaluated methods. CONCLUSION: The feasibility of an MRI-guided mid-position workflow for liver SBRT is supported by the demonstrated high precision of all image processing and registration steps.


Asunto(s)
Interpretación de Imagen Asistida por Computador/métodos , Imagenología Tridimensional/métodos , Neoplasias Hepáticas/diagnóstico por imagen , Neoplasias Hepáticas/radioterapia , Imagen por Resonancia Magnética Intervencional/métodos , Radiocirugia/métodos , Algoritmos , Humanos , Hígado/diagnóstico por imagen , Neoplasias Hepáticas/secundario , Reproducibilidad de los Resultados
5.
Phys Med Biol ; 62(1): 186-201, 2017 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-27991457

RESUMEN

In radiotherapy, abdominal and thoracic sites are candidates for performing motion tracking. With real-time control it is possible to adjust the multileaf collimator (MLC) position to the target position. However, positions are not perfectly matched and position errors arise from system delays and complicated response of the electromechanic MLC system. Although, it is possible to compensate parts of these errors by using predictors, residual errors remain and need to be compensated to retain target coverage. This work presents a method to statistically describe tracking errors and to automatically derive a patient-specific, per-segment margin to compensate the arising underdosage on-line, i.e. during plan delivery. The statistics of the geometric error between intended and actual machine position are derived using kernel density estimators. Subsequently a margin is calculated on-line according to a selected coverage parameter, which determines the amount of accepted underdosage. The margin is then applied onto the actual segment to accommodate the positioning errors in the enlarged segment. The proof-of-concept was tested in an on-line tracking experiment and showed the ability to recover underdosages for two test cases, increasing [Formula: see text] in the underdosed area about [Formula: see text] and [Formula: see text], respectively. The used dose model was able to predict the loss of dose due to tracking errors and could be used to infer the necessary margins. The implementation had a running time of 23 ms which is compatible with real-time requirements of MLC tracking systems. The auto-adaptivity to machine and patient characteristics makes the technique a generic yet intuitive candidate to avoid underdosages due to MLC tracking errors.


Asunto(s)
Planificación de la Radioterapia Asistida por Computador/métodos , Automatización , Humanos , Movimiento (Física) , Posicionamiento del Paciente , Errores de Configuración en Radioterapia , Factores de Tiempo
6.
Phys Med Biol ; 61(4): 1546-62, 2016 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-26816273

RESUMEN

By adapting to the actual patient anatomy during treatment, tracked multi-leaf collimator (MLC) treatment deliveries offer an opportunity for margin reduction and healthy tissue sparing. This is assumed to be especially relevant for hypofractionated protocols in which intrafractional motion does not easily average out. In order to confidently deliver tracked treatments with potentially reduced margins, it is necessary to monitor not only the patient anatomy but also the actually delivered dose during irradiation. In this study, we present a novel real-time online dose reconstruction tool which calculates actually delivered dose based on pre-calculated dose influence data in less than 10 ms at a rate of 25 Hz. Using this tool we investigate the impact of clinical target volume (CTV) to planning target volume (PTV) margins on CTV coverage and organ-at-risk dose. On our research linear accelerator, a set of four different CTV-to-PTV margins were tested for three patient cases subject to four different motion conditions. Based on this data, we can conclude that tracking eliminates dose cold spots which can occur in the CTV during conventional deliveries even for the smallest CTV-to-PTV margin of 1 mm. Changes of organ-at-risk dose do occur frequently during MLC tracking and are not negligible in some cases. Intrafractional dose reconstruction is expected to become an important element in any attempt of re-planning the treatment plan during the delivery based on the observed anatomy of the day.


Asunto(s)
Neoplasias de la Próstata/radioterapia , Planificación de la Radioterapia Asistida por Computador/métodos , Radioterapia Conformacional/métodos , Humanos , Masculino , Movimiento (Física) , Dosificación Radioterapéutica
7.
Z Med Phys ; 25(2): 123-34, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25280891

RESUMEN

This study demonstrates the feasibility of automated marker tracking for the real-time detection of intrafractional target motion using noisy kilovoltage (kV) X-ray images degraded by the megavoltage (MV) treatment beam. The authors previously introduced the in-line imaging geometry, in which the flat-panel detector (FPD) is mounted directly underneath the treatment head of the linear accelerator. They found that the 121 kVp image quality was severely compromised by the 6 MV beam passing through the FPD at the same time. Specific MV-induced artefacts present a considerable challenge for automated marker detection algorithms. For this study, the authors developed a new imaging geometry by re-positioning the FPD and the X-ray tube. This improved the contrast-to-noise-ratio between 40% and 72% at the 1.2 mAs/image exposure setting. The increase in image quality clearly facilitates the quick and stable detection of motion with the aid of a template matching algorithm. The setup was tested with an anthropomorphic lung phantom (including an artificial lung tumour). In the tumour one or three Calypso beacons were embedded to achieve better contrast during MV radiation. For a single beacon, image acquisition and automated marker detection typically took around 76 ± 6 ms. The success rate was found to be highly dependent on imaging dose and gantry angle. To eliminate possible false detections, the authors implemented a training phase prior to treatment beam irradiation and also introduced speed limits for motion between subsequent images.


Asunto(s)
Artefactos , Marcadores Fiduciales , Intensificación de Imagen Radiográfica/métodos , Radioterapia de Alta Energía/métodos , Radioterapia Guiada por Imagen/métodos , Tomografía Computarizada por Rayos X/métodos , Diseño de Equipo , Análisis de Falla de Equipo , Humanos , Neoplasias Pulmonares/diagnóstico por imagen , Neoplasias Pulmonares/radioterapia , Movimiento , Fantasmas de Imagen , Intensificación de Imagen Radiográfica/instrumentación , Radioterapia de Alta Energía/instrumentación , Radioterapia Guiada por Imagen/instrumentación , Reproducibilidad de los Resultados , Mecánica Respiratoria , Sensibilidad y Especificidad , Tomografía Computarizada por Rayos X/instrumentación
8.
Phys Med Biol ; 58(7): 2305-24, 2013 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-23478634

RESUMEN

We have previously investigated the use of a conventional amorphous-silicon flat-panel detector (FPD) for intrafractional image guidance in the in-line geometry. In this configuration, the FPD is mounted between the patient and the treatment head, with the front of the FPD facing towards the patient. By geometrically separating signals from the diagnostic (kV) and treatment (MV) beams, it is possible to monitor the patient and treatment beam at the same time. In this study, we propose an FPD design based on existing technology with a 70% reduced up-stream areal density that is more suited to this new application. We have investigated our FPD model by means of a validated Monte Carlo simulation. Experimentally, simple rectangular fields were used to irradiate through the detector and observe the impact of removing detector components such as the support structure or the phosphor screen on the measured signal. The proposed FPD performs better than the conventional FPD: (i) attenuation of the MV beam is decreased by 60%; (ii) the MV signal is reduced by 20% for the primary MV field region which can avoid saturation of the FPD; and (iii) long range scatter from the MV into the kV region of the detector is greatly reduced.


Asunto(s)
Método de Montecarlo , Radiografía/métodos , Silicio/química , Humanos , Dosis de Radiación
9.
Phys Med Biol ; 57(3): N15-24, 2012 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-22251668

RESUMEN

In this work, the image quality of a novel megavoltage cone-beam-computed tomography (CBCT) scanner is compared to three other image-guided radiation therapy devices by analysing images of different-sized quality assurance phantoms. The following devices are compared in terms of image uniformity, signal-to-noise ratio, contrast-to-noise ratio (CNR), electron density to HU conversion, presampling modulation transfer function (MTF(pre)) and combined spatial resolution and noise (Q-factor): (i) the Siemens Artiste kilovoltage (kV) (121 kV) CBCT device, (ii) the Artiste treatment beam line (TBL), 6 MV, (iii) the Tomotherapy (3.5 MV) fan-beam CT and (iv) Siemens' novel approach using a carbon target for a dedicated imaging beam line (IBL), 4.2 MV. Machine settings were selected to produce the same imaging dose for all devices. For a head phantom, IBL scans display CNR values 2.6 ± 0.3 times higher than for the TBL at the same dose level (for a CT-number range of -200 to -60 HU). kV CBCT, on the other hand, displays CNR values 7.9 ± 0.3 times higher than the IBL. There was no significant deviation in spatial resolution between IBL, TBL and Tomotherapy in terms of 50% and 10% MTF(pre). For kV CBCT, the MTF(pre) was significantly higher than those for other devices. In our Q-factor analysis, the IBL (14.6) scores higher than the TBL (7.9) and Tomotherapy (9.7) due to its lower noise level. The linearity of electron density to HU conversion is demonstrated for different-sized phantoms. Employing the IBL instead of the TBL significantly reduces the imaging dose by up to a factor of 5 at a constant image quality level, providing an immediate benefit for the patient.


Asunto(s)
Tomografía Computarizada de Haz Cónico/métodos , Radioterapia/métodos , Diagnóstico por Imagen/métodos , Diseño de Equipo , Cabeza/diagnóstico por imagen , Humanos , Procesamiento de Imagen Asistido por Computador , Modelos Estadísticos , Pelvis/diagnóstico por imagen , Fantasmas de Imagen , Relación Señal-Ruido , Tomógrafos Computarizados por Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA