Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38189934

RESUMEN

PURPOSE: Cognitive disorders are associated with valproate and drugs used to treat neuropsychological diseases. Cannabidiol (CBD) has beneficial effects on cognitive function. This study examined the effects of co-administration of CBD and valproate on memory consolidation, cholinergic transmission, and cyclic AMP response element-binding protein (CREB)-brain-derived neurotrophic factor (BDNF) signaling pathway in the prefrontal cortex (PFC) and hippocampus (HPC). METHODS: One-trial, step-through inhibitory test was used to evaluate memory consolidation in rats. The intra-CA1 injection of physostigmine and atropine was performed to assess the role of cholinergic transmission in this co-administration. Phosphorylated CREB (p-CREB)/CREB ratio and BDNF levels in the PFC and HPC were evaluated. RESULTS: Post-training intraperitoneal (i.p.) valproate injection reduced memory consolidation; however, post-training co-administration of CBD with valproate ameliorated memory impairment induced by valproate. Post-training intra-CA1 injection of physostigmine at the ineffective doses in memory consolidation (0.5 and 1 µg/rat), plus injection of 10 mg/kg of CBD as an ineffective dose, improved memory loss induced by valproate, which was associated with BDNF and p-CREB level enhancement in the PFC and HPC. Conversely, post-training intra-CA1 injection of ineffective doses of atropine (1 and 2 µg/rat) reduced the positive effects of injection of CBD at a dose of 20 mg/kg on valproate-induced memory loss associated with BDNF and p-CREB level reduction in the PFC and HPC. CONCLUSION: The results indicated a beneficial interplay between valproate and CBD in the process of memory consolidation, which probably creates this interaction through the BDNF-CREB signaling pathways in the cholinergic transmission of the PFC and HPC regions.

2.
Psychopharmacology (Berl) ; 241(1): 139-152, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37758936

RESUMEN

RATIONALE: Tramadol and ethanol, as psychoactive agents, are often abused. Discovering the molecular pathways of drug-induced memory creation may contribute to preventing drug addiction and relapse. OBJECTIVE: The tramadol- and ethanol-induced state-dependent memory (SDM) and cross-SDM retrieval between tramadol and ethanol were examined in this study. Moreover, because of the confirmed involvement of GABAA receptors and GABAergic neurotransmission in memory retrieval impairment, we assessed cross-SDM retrieval between tramadol and ethanol with a specific emphasis on the role of the GABAA receptors. The first hypothesis of this study was the presence of cross-SDM between tramadol and ethanol, and the second hypothesis was related to possible role of GABAA receptors in memory retrieval impairment within the dorsal hippocampus. The cannulae were inserted into the hippocampal CA1 area of NMRI mice, and a step-down inhibitory avoidance test was used to evaluate state dependence and memory recovery. RESULTS: The post-training and/or pre-test administration of tramadol (2.5 and 5 mg/kg, i.p.) and/or ethanol (0.5 and 1 g/kg, i.p.) induced amnesia, which was restored after the administration of the drugs 24 h later during the pre-test period, proposing ethanol and tramadol SDM. The pre-test injection of ethanol (0.25 and 0.5 g/kg, i.p.) with tramadol at an ineffective dose (1.25 mg/kg) enhanced tramadol SDM. Moreover, tramadol injection (1.25 and 2.5 mg/kg) with ethanol at the ineffective dose (0.25 g/kg) promoted ethanol SDM. Furthermore, the pre-test intra-CA1 injection of bicuculline (0.0625, 0.125, and 0.25 µg/mouse), a GABAA receptor antagonist, 5 min before the injection of tramadol (5 mg/kg) or ethanol (1 g/kg) inhibited tramadol- and ethanol-induced SDM dose-dependently. CONCLUSION: The findings strongly confirmed cross-SDM between tramadol and ethanol and the critical role of dorsal hippocampal GABAA receptors in the cross-SDM between tramadol and ethanol.


Asunto(s)
Tramadol , Ratones , Animales , Tramadol/farmacología , Etanol/farmacología , Memoria , Hipocampo , Amnesia/inducido químicamente , Amnesia/metabolismo , Ratones Endogámicos , Reacción de Prevención , Región CA1 Hipocampal , Receptores de GABA-A/metabolismo
3.
Iran J Basic Med Sci ; 26(9): 1090-1097, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37605729

RESUMEN

Objectives: Lithium and quetiapine are administered simultaneously as a treatment for bipolar disorder. The concurrent use of these two drugs has been observed to affect the neurobiological mechanisms underlying learning and memory. To clarify the precise mechanisms involved, we evaluated the possible role of the dorsal hippocampal CA1 NMDA receptors in the interactive effects of lithium and quetiapine in memory consolidation. Materials and Methods: The dorsal hippocampal CA1 regions of adult male Wistar rats were bilaterally cannulated, and a single-trial step-through inhibitory avoidance apparatus was used to assess memory consolidation. Results: Post-training administration of certain doses of lithium (20, 30, and 40 mg/kg, IP) diminished memory consolidation. Post-training administration of higher doses of quetiapine (5, 10, and 20 mg/kg, IP) augmented memory consolidation. Post-training administration of certain doses of quetiapine (2.5, 5, 10, and 20 mg/kg) dose-dependently restored lithium-induced memory impairment. Post-training microinjection of ineffective doses of the NMDA (10-5 and 10-4 µg/rat, intra-CA1) plus an ineffective dose of quetiapine (2.5 mg/kg) restored the lithium-induced memory impairment. Post-training microinjection of ineffective doses of the noncompetitive NMDA receptor antagonist, MK-801 (0.0625 and 0.0125 µg/rat, intra-CA1), diminished the quetiapine-induced (10 mg/kg) memory improvement in lithium-induced memory impairment. Conclusion: These findings suggest a functional interaction between lithium and quetiapine through hippocampal CA1 NMDA receptor mechanisms in memory consolidation.

4.
Nucleosides Nucleotides Nucleic Acids ; 41(10): 994-1011, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35815694

RESUMEN

In this investigation, Fe3O4 magnetic nanoparticles (MNPs) were prepared via a chemical coprecipitation reaction, and the surface of Fe3O4 MNPs was coated with silica by a sol-gel process. The surface of Fe3O4@SiO2 MNPs was modified by an antioxidant agent, trans-ferulic acid, to achieve water-soluble MNPs for biological applications. Fourier transform infrared spectroscopy (FT-IR) showed that the MNPs were successfully coated with SiO2 and ferulic acid (FA) ligand. The morphology of γ-Fe2O3@SiO2-FA MNPs was found to be spherical in images of transmission electron microscopy (TEM) and showed a uniform size distribution with an average diameter of 21 nm. The in vitro cytotoxic activity of γ-Fe2O3@SiO2-FA MNPs and FA were investigated against the human cancer cells (MCF-7, PC-3, U-87 MG, A-2780, and A-549) by MTT colorimetric assay. The cytotoxic effect of MNPs on all cancer cell lines was several times of magnitude higher compared to free FA except for A-549 cell lines. Furthermore, in vitro DNA binding studies were investigated by UV-vis and circular dichroism spectroscopies.


Asunto(s)
Antineoplásicos , Nanopartículas , Antineoplásicos/farmacología , Antioxidantes/farmacología , Ácidos Cumáricos , ADN , Humanos , Ligandos , Nanopartículas/química , Dióxido de Silicio/química , Espectroscopía Infrarroja por Transformada de Fourier , Agua
5.
Neurobiol Learn Mem ; 192: 107638, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35595026

RESUMEN

Understanding the neurobiological mechanisms of drug-related learning and memory formation may help the treatment of cognitive disorders. Dysfunction of the cannabinoid and serotonergic systems has been demonstrated in learning and memory disorders. The present paper investigates the phenomenon called state-dependent memory (SDM) induced by ACPA (a selective cannabinoid CB1 receptor agonist) and 8-OH-DPAT (a nonselective 5-HT1A receptor agonist) with special focus on the role of the 5-HT1A receptor in the effects of both ACPA and 8-OH-DPAT SDM and cross state-dependent memory retrieval between ACPA and 8-OH-DPAT in a step-down inhibitory avoidance task. The dorsal hippocampal CA1 regions of adult male NMRI mice were bilaterally cannulated, and all drugs were microinjected into the intended injection sites. A single-trial step-down inhibitory avoidance task was used to assess memory retrieval and state-dependence. Post-training and/or pre-test microinjections of ACPA (1 and 2 ng/mouse) and 8-OH-DPAT (0.5 and 1 µg/mouse) dose-dependently induced amnesia. Pre-test administration of the same doses of ACPA and 8-OH-DPAT reversed the post-training ACPA- and 8-OH-DPAT-induced amnesia, respectively. This phenomenon has been named SDM. 8-OH-DPAT (1 µg/mouse) reversed the amnesia induced by ACPA (0.5, 1, and 2 ng/mouse) and induced ACPA SDM. ACPA (2 ng/mouse) reversed the amnesia induced by 8-OH-DPAT (0.25, 0.5, and 1 µg/mouse) and induced 8-OH-DPAT SDM. Pre-test administration of a 5-HT1A receptor antagonist, (S)-WAY 100,135 (0.25 and 0.5 µg/mouse), 5 min before ACPA and 8-OH-DPAT dose-dependently inhibited ACPA- and 8-OH-DPAT-induced SDM, respectively. The present study results demonstrated ACPA- and 8-OH-DPAT- induced SDM. Overall, the data revealed that dorsal hippocampal 5-HT1A receptor mechanisms play a pivotal role in modulating cross state-dependent memory retrieval between ACPA and 8-OH-DPAT.


Asunto(s)
Cannabinoides , 8-Hidroxi-2-(di-n-propilamino)tetralin/farmacología , Amnesia/inducido químicamente , Animales , Reacción de Prevención , Agonistas de Receptores de Cannabinoides/farmacología , Hipocampo , Masculino , Ratones , Receptor Cannabinoide CB1 , Receptor de Serotonina 5-HT1A
6.
Artículo en Inglés | MEDLINE | ID: mdl-31172862

RESUMEN

The interaction of the [Mn(mef)2(phen)H2O] complex in which mef is mefenamic acid drug and phen is 1,10 phenanthrolin ligand with calf thymus DNA (ct-DNA) was studied by using different spectroscopic methods, molecular docking and viscometery. The competitive fluorescence and UV-Vis absorption spectroscopy indicated that the complex interacted with ctDNA via intercalating binding mode with the binding constant of 1.16 × 104 Lmol-1. The thermodynamic studies showed that the reaction between the complex and ctDNA is exothermic. Furthermore, the complex induced changes in DNA viscosity. Circular dichroism spectroscopy (CD) was employed to measure the conformational changes of ctDNA in the presence of the complex and verified intercalation binding mode. The molecular modeling results illustrated that the complex interacted via intercalation by relative binding energy of -28.45 kJ mol-1.


Asunto(s)
Complejos de Coordinación/química , ADN/química , Sustancias Intercalantes/química , Manganeso/química , Ácido Mefenámico/química , Simulación del Acoplamiento Molecular/métodos , Espectrometría de Fluorescencia , Termodinámica , Viscosidad
7.
Nucleosides Nucleotides Nucleic Acids ; 36(8): 497-510, 2017 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-28758878

RESUMEN

The interaction of a novel macrocyclic copper(II) complex, ([CuL(ClO4)2] that L is 1,3,6,10,12,15-hexaazatricyclo[13.3.1.16,10]eicosane) with calf thymus DNA (ct-DNA) was investigated by various physicochemical techniques and molecular docking at simulated physiological conditions (pH = 7.4). The absorption spectra of the Cu(II) complex with ct-DNA showed a marked hyperchroism with 10 nm blue shift. The intrinsic binding constant (Kb) was determined as 1.25 × 104 M-1, which is more in keeping with the groove binding with DNA. Furthermore, competitive fluorimetric studies with Hoechst33258 have shown that Cu(II) complex exhibits the ability to displace the ct-DNA-bound Hoechst33258 indicating that it binds to ct-DNA in strong competition with Hoechst33258 for the groove binding. Also, no change in the relative viscosity of ct-DNA and fluorescence intensity of ct-DNA-MB complex in the present of Cu(II) complex is another evidence to groove binding. The thermodynamic parameters are calculated by van't Hoff equation, which demonstrated that hydrogen bonds and van der Waals interactions played major roles in the binding reaction. The experimental results were in agreement with the results obtained via molecular docking study.


Asunto(s)
Cobre/química , ADN/metabolismo , Compuestos Macrocíclicos/química , Simulación del Acoplamiento Molecular , Compuestos Organometálicos/química , Compuestos Organometálicos/metabolismo , Animales , Antineoplásicos/química , Antineoplásicos/metabolismo , Secuencia de Bases , Bovinos , ADN/química , ADN/genética , Diseño de Fármacos , Conformación de Ácido Nucleico , Análisis Espectral , Termodinámica
8.
Artículo en Inglés | MEDLINE | ID: mdl-21930421

RESUMEN

The present study investigated the binding interaction between an antiviral drug, valacyclovir and calf thymus DNA (CT-DNA) using emission, absorption, circular dichroism, viscosity and DNA melting studies. In fluorimetric studies, thermodynamic enhancement constant (K(D)) and bimolecular enhancement constant (K(B)) were calculated at different temperatures and demonstrated that fluorescence enhancement is not initiated by a dynamic process, but instead by a static process that involves complex DNA formation in the ground state. Further, the enthalpy and entropy of the reaction between the drug and CT-DNA showed that the reaction is exothermic and enthalpy-favored. In addition, detectable changes in the circular dichroism spectrum of CT-DNA in the presence of valacyclovir indicated conformational changes in the DNA double helix following interaction with the drug. All these results prove that this antiviral drug interacts with CT-DNA via an intercalative mode of binding.


Asunto(s)
Aciclovir/análogos & derivados , Antivirales/farmacología , ADN/metabolismo , Valina/análogos & derivados , Aciclovir/farmacología , Animales , Bovinos , Dicroismo Circular , ADN/química , Desnaturalización de Ácido Nucleico , Espectrometría de Fluorescencia , Termodinámica , Valaciclovir , Valina/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...