Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Antibiotics (Basel) ; 11(10)2022 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-36290032

RESUMEN

Pseudomonas aeruginosa is an opportunistic gram-negative human pathogen that causes a wide range of infections, including nosocomial infections. Aside from the intrinsic and acquired antimicrobial resistance against many classes of antibiotics, P. aeruginosa can produce an extracellular polymeric matrix called "biofilm" that protects bacteria from antibiotics and harmful factors. Biofilm enables P. aeruginosa to develop chronic infections. This study assessed the inhibitory action of ZnO-nanoparticles against biofilms formed by multidrug-resistant P. aeruginosa strains. A collection of 24 clinical strains of P. aeruginosa were tested for their antimicrobial resistance against different antibiotics using the disk diffusion method. The antibiofilm activity of ZnO-NPs was assessed using the microtiter plate biofilm assay. The application of ZnO-NPs dramatically modulated the resistance profile and biofilm activity of P. aeruginosa. The combination of ZnO-NPs and meropenem showed synergistic antipseudomonal activity with lower MICs. The scanning electron microscope (SEM) micrographs revealed complete inhibition of biofilms treated with the meropenem-ZnO-NPs combination. Reduced expression of biofilm regulating genes lasR, pslA, and fliC was detected, reflecting the enhanced antibiofilm effect of ZnO-NPs. In vivo application of this antimicrobial mixture completely cured P. aeruginosa-induced keratitis in rats. Our findings represent a dual enhancement of antibacterial and antibiofilm activity via the use of meropenem-ZnO-NPs combination against carbapenem-resistant P. aeruginosa infections.

2.
Environ Sci Pollut Res Int ; 29(55): 83860-83877, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35771321

RESUMEN

Different activities related to uranium mining and nuclear industry may have a negative impact on the environment. Bioremediation of nuclear pollutants using microorganisms is an effective, safe, and economic method. The present study compared the uranium biosorption efficiency of two immobilized algae: Nostoc sp. (cyanophyte) and Scenedesmus sp. (chlorophyte). Effects of metal concentration, contact time, pH, and biosorbent dosage were also studied. The maximum biosorption capacity (60%) by Nostoc sp. was obtained at 300 mg/l uranium solution, 60 min, pH 4.5, and 4.2 g/l algal dosage, whereas Scenedesmus sp. maximally absorbed uranium (65 %) at 150 mg/l uranium solution, 40 min, pH 4.5, and 5.6 g/l of algal dosage. The interaction of metal ions as Na2SO4, FeCl3, CuCl2, NiCl2, CoCl2, CdCl2, and AlCl3 did not support the uranium biosorption by algae. The obtained data was adapted to the linearized form of the Langmuir isotherm model. The experimental qmax values were 130 and 75 mg/g for Nostoc sp. and Scenedesmus sp., respectively. Moreover, the pseudo-second-order kinetic model was more applicable, as the calculated parameters were close to the experimental data. The biosorbents were also characterized by Fourier-transform infrared spectroscopy (ATR-FTIR), energy-dispersive X-ray spectroscopy (EDX), and scanning electron microscopy (SEM) analyses. The results suggest the applicability of algae, in their immobilized form, for recovery and biosorption of uranium from aqueous solution.


Asunto(s)
Nostoc , Scenedesmus , Uranio , Contaminantes Químicos del Agua , Uranio/análisis , Adsorción , Cinética , Contaminantes Químicos del Agua/análisis , Iones , Espectroscopía Infrarroja por Transformada de Fourier , Concentración de Iones de Hidrógeno , Termodinámica
3.
Physiol Mol Biol Plants ; 27(10): 2151-2163, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34744358

RESUMEN

Two strains of the halophilic alga Dunaliella parva, a wild type (WT) and a transgenic strain (D-PSY) containing an exogenous phytoene synthase gene (PSY), were used to investigate the growth, carotenoid accumulation, and carotenoid antioxidant properties under nitrogen starvation, cobalt and biochar treatments. D-PSY had higher carotenoid content (1.8 times) compared to the WT. The applied stressors stimulated the carotenoid content of both WT and D-PSY especially. The carotenoids were assayed for the potential antioxidant activities by five different assays. Generally, the antioxidant activities of D-PSY carotenoids were superior to that of WT. The biochar and nitrogen treatments generally enhanced the antioxidant activities of the carotenoids, whereas cobalt came third in this respect. The D-PSY transgenic algal strain has both high carotenoids content and antioxidant properties which enhanced under the relatively lower concentrations of the applied stressors. The results have shown to lead to an accurate application of the transgenic alga as a source of potent antioxidant compounds. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s12298-021-01077-0.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA