Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
R Soc Open Sci ; 8(1): 201076, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33614065

RESUMEN

Recently, pharmaceutical pollutants in water have emerged as a global concern as they give threat to human health and the environment. In this study, graphene nanoplatelets (GNPs) were used to efficiently remove antibiotics sulfamethoxazole (SMX) and analgesic acetaminophen (ACM) as pharmaceutical pollutants from water by an adsorption process. GNPs; C750, C300, M15 and M5 were characterized by high-resolution transmission electron microscopy, Raman spectroscopy, X-ray diffraction and Brunauer-Emmett-Teller. The effects of several parameters viz. solution pH, adsorbent amount, initial concentration and contact time were studied. The parameters were optimized by a batch adsorption process and the maximum removal efficiency for both pharmaceuticals was 99%. The adsorption kinetics and isotherms models were employed, and the experimental data were best analysed with pseudo-second kinetic and Langmuir isotherm with maximum adsorption capacity (Qm) of 210.08 mg g-1 for SMX and 56.21 mg g-1 for ACM. A regeneration study was applied using different eluents; 5% ethanol-deionized water 0.005 M NaOH and HCl. GNP C300 was able to remove most of both pollutants from environmental water samples. Molecular docking was used to simulate the adsorption mechanism of GNP C300 towards SMX and ACM with a free binding energy of -7.54 kcal mol-1 and -5.29 kcal mol-1, respectively, which revealed adsorption occurred spontaneously.

2.
RSC Adv ; 10(70): 43213-43224, 2020 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-35514937

RESUMEN

An aluminium-based metal-organic framework ((MOF), MIL-53(Al)), was hydrothermally synthesized, characterized and applied for the remediation of the herbicides dicamba (3,6-dichloro-2-methoxy benzoic acid) and 4-chloro-2-methylphenoxyacetic acid (MCPA) in aqueous medium. Response surface methodology (RSM) and artificial neural network (ANN) were used to design, optimize and predict the non-linear relationships between the independent and dependent variables. The shared interaction of the effects of key response parameters on the adsorption capacity were assessed using the central composite design-RSM and ANN optimization models. The optimum adsorption capacities for dicamba and MCPA are 228.5 and 231.9 mg g-1, respectively. The RSM ANOVA results showed significant p-values, with coefficients of determination (R 2) = 0.988 and 0.987 and R 2 adjusted = 0.974 and 0.976 for dicamba and MCPA, respectively. The ANN prediction model gave R 2 = 0.999 and 0.999, R 2 adjusted = 0.997 and 0.995 and root mean square errors (RMSEs) of 0.001 and 0.004 for dicamba and MCPA, respectively. In each set of experimental conditions used for the study, the ANN gave better prediction than the RSM, with high accuracy and minimal error. The rapid removal (∼25 min), reusability (5 times) and good agreement between the experimental findings and simulation results suggest the great potential of MIL-53(Al) for the remediation of dicamba and MCPA from water matrices.

3.
RSC Adv ; 9(71): 41490-41501, 2019 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-35541585

RESUMEN

Three adsorbents based on the metal-organic frameworks (MOFs), viz.; MIL-88(Fe), NH2-MIL-88(Fe), and mixed-MIL-88(Fe) were synthesized using a microwave-assisted solvothermal technique. The as-synthesized MOFs were characterized by X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET), field emission scanning microscopy (FESEM), X-ray photoelectron spectroscopy (XPS), thermogravimetric analysis (TGA), and Fourier transform infrared spectroscopy (FTIR). The MOFs were shown to possess highly crystalline and porous structures with specific surface areas of 1240, 941, and 1025 m2 g-1 and pore volumes of 0.7, 0.6 and 0.6 m3 g-1 for MIL-88(Fe), NH2-MIL-88(Fe) and mixed-MIL-88(Fe), respectively. Faster removal of a model polycyclic aromatic hydrocarbon, anthracene (ANT) within 25 minutes, was achieved when these MOFs were used as adsorbents in water. The removal efficiency was 98.3, 92.4 and 95.8% for MIL-88(Fe), NH2-MIL-88(Fe) and mixed-MIL-88(Fe), respectively. The kinetics and isotherms of the process were best statistically described by pseudo-second-order and Langmuir models, respectively, while the thermodynamic studies revealed the exothermic and spontaneous nature of the process. Docking simulations were found to be consistent with the experimental results with MIL-88(Fe) showing the best binding capacity with the ANT molecule.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA