Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Pain ; 161(11): 2619-2628, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32569089

RESUMEN

Children diagnosed with Christianson syndrome (CS), a rare X-linked neurodevelopmental disorder characterized by intellectual disability, epilepsy, ataxia, and mutism, also suffer from hyposensitivity to pain. This places them at risk of sustaining serious injuries that often go unattended. Christianson syndrome is caused by mutations in the alkali cation/proton exchanger SLC9A6/NHE6 that regulates recycling endosomal pH homeostasis and trafficking. Yet, it remains unclear how defects in this transporter lead to altered somatosensory functions. In this study, we validated a Nhe6 knockout (KO) mouse as a model of CS and used it to identify the cellular mechanisms underlying the elevated pain tolerance observed in CS patients. Within the central nervous system, NHE6 immunolabelling is detected in a small percentage of cortical neurons involved in pain processing, including those within the primary somatosensory and the anterior cingulate cortices as well as the periaqueductal gray. Interestingly, it is expressed in a larger percentage of nociceptors. Behaviourally, Nhe6 KO mice have decreased nocifensive responses to acute noxious thermal, mechanical, and chemical (ie, capsaicin) stimuli. The reduced capsaicin sensitivity in the KO mice correlates with a decreased expression of the transient receptor potential channel TRPV1 at the plasma membrane and capsaicin-induced Ca influx in primary cultures of nociceptors. These data indicate that NHE6 is a significant determinant of nociceptor function and pain behaviours, vital sensory processes that are impaired in CS.


Asunto(s)
Ataxia , Epilepsia , Enfermedades Genéticas Ligadas al Cromosoma X , Discapacidad Intelectual , Microcefalia , Trastornos de la Motilidad Ocular , Animales , Capsaicina , Humanos , Ratones , Ratones Endogámicos C57BL , Nocicepción , Nociceptores , Intercambiadores de Sodio-Hidrógeno , Canales Catiónicos TRPV
2.
Cell ; 180(5): 956-967.e17, 2020 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-32084332

RESUMEN

Mechanotransduction, the conversion of mechanical stimuli into electrical signals, is a fundamental process underlying essential physiological functions such as touch and pain sensing, hearing, and proprioception. Although the mechanisms for some of these functions have been identified, the molecules essential to the sense of pain have remained elusive. Here we report identification of TACAN (Tmem120A), an ion channel involved in sensing mechanical pain. TACAN is expressed in a subset of nociceptors, and its heterologous expression increases mechanically evoked currents in cell lines. Purification and reconstitution of TACAN in synthetic lipids generates a functional ion channel. Finally, a nociceptor-specific inducible knockout of TACAN decreases the mechanosensitivity of nociceptors and reduces behavioral responses to painful mechanical stimuli but not to thermal or touch stimuli. We propose that TACAN is an ion channel that contributes to sensing mechanical pain.


Asunto(s)
Canales Iónicos/fisiología , Mecanotransducción Celular/genética , Nociceptores/metabolismo , Dolor/genética , Tacto/genética , Animales , Regulación de la Expresión Génica/genética , Humanos , Canales Iónicos/genética , Lípidos/genética , Ratones , Ratones Noqueados , Dolor/fisiopatología , Técnicas de Placa-Clamp , Estrés Mecánico , Tacto/fisiología
3.
Cell Rep ; 13(6): 1246-1257, 2015 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-26527000

RESUMEN

Neuropathic pain is a chronic debilitating disease that results from nerve damage, persists long after the injury has subsided, and is characterized by spontaneous pain and mechanical hypersensitivity. Although loss of inhibitory tone in the dorsal horn of the spinal cord is a major contributor to neuropathic pain, the molecular and cellular mechanisms underlying this disinhibition are unclear. Here, we combined pharmacogenetic activation and selective ablation approaches in mice to define the contribution of spinal cord parvalbumin (PV)-expressing inhibitory interneurons in naive and neuropathic pain conditions. Ablating PV neurons in naive mice produce neuropathic pain-like mechanical allodynia via disinhibition of PKCγ excitatory interneurons. Conversely, activating PV neurons in nerve-injured mice alleviates mechanical hypersensitivity. These findings indicate that PV interneurons are modality-specific filters that gate mechanical but not thermal inputs to the dorsal horn and that increasing PV interneuron activity can ameliorate the mechanical hypersensitivity that develops following nerve injury.


Asunto(s)
Hiperalgesia/fisiopatología , Interneuronas/fisiología , Neuralgia/fisiopatología , Asta Dorsal de la Médula Espinal/fisiología , Animales , Células Cultivadas , Hiperalgesia/patología , Interneuronas/metabolismo , Interneuronas/patología , Ratones , Neuralgia/patología , Parvalbúminas/genética , Parvalbúminas/metabolismo , Proteína Quinasa C/metabolismo , Asta Dorsal de la Médula Espinal/patología , Asta Dorsal de la Médula Espinal/fisiopatología , Sinapsis/metabolismo , Sinapsis/fisiología , Tacto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...