Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Bioorg Chem ; 151: 107658, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39033546

RESUMEN

A peptidase S9 prolyl oligopeptidase domain from Thermotoga petrophila RKU-1T (TpS9) was over-expressed as an active, soluble and hyperstable lipolytic enzyme in the mesophilic host system. The sequence analysis demonstrated, TpS9 is an esterase/lipase-like protein belongs to alpha/beta (α/ß)-hydrolase superfamily with a well-conserved penta-peptide (GLSAG) motif and α/ß-hydrolase fold. Various approaches (induction and cultivation) were employed to enrich TpS9 production, 6.04- and 7.26-fold increment was observed with IPTG (0.4 mM) and lactose (200 mM) in the modified 4ZB medium (pH 7.0), but with IPTG-independent auto-induction strategy 9.02-fold augmentation was achieved after 16 h incubation at 24 °C (150 rev min-1). Purified TpS9 showed optimal activity in McIlvaine buffer (pH 6.5) at 80-85 °C, and revealed great thermal (30-85 °C) and pH (6.0-9.0) for 8 h. No obvious constraint was perceived with various metal ions, surfactants, commercial laundry detergents, and chemical modulators. Whereas, TpS9 activity was improved with Ca2+, Mn2+, and Mg2+ by 210 %, 142.5 %, and 134.3 %, respectively. With 2.5 M NaCl (215 %), 50 % (v/v) methanol (140 %), 50 % (v/v) ethanol (126.6 %), 50 % (v/v) n-butanol (122.3 %), 50 % (v/v) isopropanol (120.4 %), 50 % (v/v) acetone (118.6 %) and 50 % (v/v) glycerol (113.2 %) TpS9 activity was also enriched. TpS9 demonstrated great affinity toward natural oils and p-nitrophenyl ester substrates, but showed peak activity with p-nitrophenyl palmitate (3160 U mg-1). Km, Vmax, kcat, Vmax Km-1 and kcat Km-1 of TpS9 with pNPP were 0.421 mM, 4015 µmol mg-1 min-1, 906.4 s-1, 9536.8 min-1, and 2152.96 mM-1 s-1, respectively. Moreover, TPS9 has notable ability to clean stains (5 min) and degrade the animals' fat (3 h). Hence, TpS9 is a favorable candidate as cleaning bio-additive in detergent formulation, fat degradation and various other applications.


Asunto(s)
Detergentes , Lipasa , Lipasa/metabolismo , Lipasa/química , Detergentes/química , Detergentes/farmacología , Estructura Molecular , Estabilidad de Enzimas , Temperatura , Relación Estructura-Actividad , Concentración de Iones de Hidrógeno
2.
Mol Biotechnol ; 2024 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-38461181

RESUMEN

Esterases are hydrolases that contribute to the hydrolysis of ester bonds into both water-soluble acyl esters and emulsified glycerol-esters containing short-chain acyl groups. They have garnered significant attention from biotechnologists and organic chemists due to their immense commercial value. Esterases, with their diverse and significant properties, have become highly sought after for various industrial applications. Synthesized ubiquitously by a wide range of living organisms, including animals, plants, and microorganisms, these enzymes have found microbial esterases to be the preferred choice in industrial settings. The cost-effective production of microbial esterases ensures higher yields, unaffected by seasonal variations. Their applications span diverse sectors, such as food manufacturing, leather tanneries, paper and pulp production, textiles, detergents, cosmetics, pharmaceuticals, biodiesel synthesis, bioremediation, and waste treatment. As the global trend shifts toward eco-friendly and sustainable practices, industrial processes are evolving with reduced waste generation, lower energy consumption, and the utilization of biocatalysts derived from renewable and unconventional raw materials. This review explores the background, structural characteristics, thermostability, and multifaceted roles of bacterial esterases in crucial industries, aiming to optimize and analyze their properties for continued successful utilization in diverse industrial processes. Additionally, recent advancements in esterase research are overviewed, showcasing novel techniques, innovations, and promising areas for further exploration.

3.
Int J Biol Macromol ; 265(Pt 1): 130993, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38508567

RESUMEN

Hemicellulases are enzymes that hydrolyze hemicelluloses, common polysaccharides in nature. Thermophilic hemicellulases, derived from microbial strains, are extensively studied as natural biofuel sources due to the complex structure of hemicelluloses. Recent research aims to elucidate the catalytic principles, mechanisms and specificity of hemicellulases through investigations into their high-temperature stability and structural features, which have applications in biotechnology and industry. This review article targets to serve as a comprehensive resource, highlighting the significant progress in the field and emphasizing the vital role of thermophilic hemicellulases in eco-friendly catalysis. The primary goal is to improve the reliability of hemicellulase enzymes obtained from thermophilic bacterial strains. Additionally, with their ability to break down lignocellulosic materials, hemicellulases hold immense potential for biofuel production. Despite their potential, the commercial viability is hindered by their high enzyme costs, necessitating the development of efficient bioprocesses involving waste pretreatment with microbial consortia to overcome this challenge.


Asunto(s)
Bacterias , Biocombustibles , Reproducibilidad de los Resultados , Glicósido Hidrolasas/química , Lignina
4.
Anal Biochem ; 671: 115150, 2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-37054862

RESUMEN

DNA polymerases are the enzymes able to replicate the genetic information in nucleic acid. As a result, they are necessary to copy the complete genome of every living creature before cell division and sustain the integrity of the genetic information throughout the life of each cell. Any organism that uses DNA as its genetic information, whether unicellular or multicellular, requires one or more thermostable DNA polymerases to thrive. Thermostable DNA polymerase is important in modern biotechnology and molecular biology because it results in methods such as DNA cloning, DNA sequencing, whole genome amplification, molecular diagnostics, polymerase chain reaction, synthetic biology, and single nucleotide polymorphism detection. There are at least 14 DNA-dependent DNA polymerases in the human genome, which is remarkable. These include the widely accepted, high-fidelity enzymes responsible for replicating the vast majority of genomic DNA and eight or more specialized DNA polymerases discovered in the last decade. The newly discovered polymerases' functions are still being elucidated. Still, one of its crucial tasks is to permit synthesis to resume despite the DNA damage that stops the progression of replication-fork. One of the primary areas of interest in the research field has been the quest for novel DNA polymerase since the unique features of each thermostable DNA polymerase may lead to the prospective creation of novel reagents. Furthermore, protein engineering strategies for generating mutant or artificial DNA polymerases have successfully generated potent DNA polymerases for various applications. In molecular biology, thermostable DNA polymerases are extremely useful for PCR-related methods. This article examines the role and importance of DNA polymerase in a variety of techniques.


Asunto(s)
Biotecnología , ADN Polimerasa Dirigida por ADN , Humanos , Estudios Prospectivos , ADN Polimerasa Dirigida por ADN/metabolismo , Biotecnología/métodos , Ingeniería de Proteínas , Reacción en Cadena de la Polimerasa , Replicación del ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA