Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Brain Struct Funct ; 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38720004

RESUMEN

The expression of Neuritin-1 (NRN1), a neurotrophic factor crucial for neurodevelopment and synaptic plasticity, is enhanced by the Brain Derived Neurotrophic Factor (BDNF). Although the receptor of NRN1 remains unclear, it is suggested that NRN1's activation of the insulin receptor (IR) pathway promotes the transcription of the calcium voltage-gated channel subunit alpha1 C (CACNA1C). These three genes have been independently associated with schizophrenia (SZ) risk, symptomatology, and brain differences. However, research on how they synergistically modulate these phenotypes is scarce. We aimed to study whether the genetic epistasis between these genes affects the risk and clinical presentation of the disorder via its effect on brain structure. First, we tested the epistatic effect of NRN1 and BDNF or CACNA1C on (i) the risk for SZ, (ii) clinical symptoms severity and functionality (onset, PANSS, CGI and GAF), and (iii) brain cortical structure (thickness, surface area and volume measures estimated using FreeSurfer) in a sample of 86 SZ patients and 89 healthy subjects. Second, we explored whether those brain clusters influenced by epistatic effects mediate the clinical profiles. Although we did not find a direct epistatic impact on the risk, our data unveiled significant effects on the disorder's clinical presentation. Specifically, the NRN1-rs10484320 x BDNF-rs6265 interplay influenced PANSS general psychopathology, and the NRN1-rs4960155 x CACNA1C-rs1006737 interaction affected GAF scores. Moreover, several interactions between NRN1 SNPs and BDNF-rs6265 significantly influenced the surface area and cortical volume of the frontal, parietal, and temporal brain regions within patients. The NRN1-rs10484320 x BDNF-rs6265 epistasis in the left lateral orbitofrontal cortex fully mediated the effect on PANSS general psychopathology. Our study not only adds clinical significance to the well-described molecular relationship between NRN1 and BDNF but also underscores the utility of deconstructing SZ into biologically validated brain-imaging markers to explore their mediation role in the path from genetics to complex clinical manifestation.

2.
Mol Psychiatry ; 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38503928

RESUMEN

Altered DNA methylation (DNAm) patterns of discoidin domain receptor 1 (DDR1) have been found in the blood and brain of patients with schizophrenia (SCZ) and the brain of patients with bipolar disorder (BD). Childhood trauma (CT) is associated with changes in DNAm that in turn are related to suicidal behavior (SB) in patients with several psychiatric disorders. Here, using MassARRAY® technology, we studied 128 patients diagnosed with BD in remission and 141 healthy controls (HCs) to compare leukocyte DDR1 promoter DNAm patterns between patients and HCs and between patients with and without SB. Additionally, we investigated whether CT was associated with DDR1 DNAm and mediated SB. We found hypermethylation at DDR1 cg19215110 and cg23953820 sites and hypomethylation at cg14279856 and cg03270204 sites in patients with BD compared to HCs. Logistic regression models showed that hypermethylation of DDR1 cg23953820 but not cg19215110 and CT were risk factors for BD, while cg14279856 and cg03270204 hypomethylation were protective factors. In patients, CT was a risk factor for SB, but DDR1 DNAm, although associated with CT, did not mediate the association of CT with SB. This is the first study demonstrating altered leukocyte DDR1 promoter DNAm in euthymic patients with BD. We conclude that altered DDR1 DNAm may be related to immune and inflammatory mechanisms and could be a potential blood biomarker for the diagnosis and stratification of psychiatric patients.

3.
J Psychiatr Res ; 173: 166-174, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38537483

RESUMEN

Although cognitive remediation therapy (CRT) produces cognitive benefits in schizophrenia, we do not yet understand whether molecular changes are associated with this cognitive improvement. A gene central to synaptic plasticity, the BDNF, has been proposed as one potential route. This study assesses whether BDNF methylation changes following CRT-produced cognitive improvement are detected. A randomized and controlled trial was performed with two groups (CRT, n = 40; TAU: Treatment as Usual, n = 20) on a sample of participants with schizophrenia. CRT was delivered by trained therapists using a web-based computerized program. Mixed Models, where the interaction of treatment (CRT, TAU) by time (T0: 0 weeks, T1: 16 weeks) was the main effect were used. Then, we tested the association between the treatment and methylation changes in three CpG islands of the BDNF gene. CRT group showed significant improvements in some cognitive domains. Between-groups differential changes in 5 CpG units over time were found, 4 in island 1 (CpG1.2, CpG1.7, CpG1.10, CpG1.17) and 1 in island 3 (CpG3.2). CRT group showed increases in methylation in CpG1.2, CpG1.7 and decreases in pG1.10, CpG1.17, and CpG3.2. Differences in the degree of methylation were associated with changes in Speed of Processing, Working Memory, and Verbal Learning within the CRT group. Those findings provide new data on the relationship between cognitive improvement and changes in peripheral methylation levels of BDNF gene, a key factor involved in neuroplasticity regulation. Trial Registration: NCT04278027.


Asunto(s)
Remediación Cognitiva , Esquizofrenia , Humanos , Esquizofrenia/genética , Esquizofrenia/terapia , Esquizofrenia/complicaciones , Factor Neurotrófico Derivado del Encéfalo/genética , Memoria a Corto Plazo , Metilación
4.
Eur Psychiatry ; 67(1): e31, 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38465374

RESUMEN

BACKGROUND: The intelligence quotient (IQ) of patients with first-episode psychosis (FEP) and their unaffected relatives may be related to the genetic burden of schizophrenia (SCZ). The polygenic score approach can be useful for testing this question. AIM: To assess the contribution of the polygenic risk scores for SCZ (PGS-SCZ) and polygenic scores for IQ (PGS-IQ) to the individual IQ and its difference from the mean IQ of the family (named family-IQ) through a family-based design in an FEP sample. METHODS: The PAFIP-FAMILIES sample (Spain) consists of 122 FEP patients, 131 parents, 94 siblings, and 176 controls. They all completed the WAIS Vocabulary subtest for IQ estimation and provided a DNA sample. We calculated PGS-SCZ and PGS-IQ using the continuous shrinkage method. To account for relatedness in our sample, we performed linear mixed models. We controlled for covariates potentially related to IQ, including age, years of education, sex, and ancestry principal components. RESULTS: FEP patients significantly deviated from their family-IQ. FEP patients had higher PGS-SCZ than other groups, whereas the relatives had intermediate scores between patients and controls. PGS-IQ did not differ between groups. PGS-SCZ significantly predicted the deviation from family-IQ, whereas PGS-IQ significantly predicted individual IQ. CONCLUSIONS: PGS-SCZ discriminated between different levels of genetic risk for the disorder and was specifically related to patients' lower IQ in relation to family-IQ. The genetic background of the disorder may affect neurocognition through complex pathological processes interacting with environmental factors that prevent the individual from reaching their familial cognitive potential.


Asunto(s)
Trastornos Psicóticos , Esquizofrenia , Humanos , Esquizofrenia/diagnóstico , Esquizofrenia/genética , Trastornos Psicóticos/genética , Trastornos Psicóticos/psicología , Herencia Multifactorial , Factores de Riesgo , Inteligencia/genética
5.
Schizophr Bull ; 50(2): 304-316, 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-37314865

RESUMEN

BACKGROUND AND HYPOTHESIS: There is uncertainty about the relationship between the family intelligence quotient (IQ) deviation and the risk for schizophrenia spectrum disorders (SSD). This study tested the hypothesis that IQ is familial in first episode psychosis (FEP) patients and that their degree of familial resemblance is associated with different profiles. STUDY DESIGN: The participants of the PAFIP-FAMILIAS project (129 FEP patients, 143 parents, and 97 siblings) completed the same neuropsychological battery. IQ-familiality was estimated through the Intraclass Correlation Coefficient (ICC). For each family, the intra-family resemblance score (IRS) was calculated as an index of familial similarity. The FEP patients were subgrouped and compared according to their IRS and IQ. STUDY RESULTS: IQ-familiality was low-moderate (ICC = 0.259). A total of 44.9% of the FEP patients had a low IRS, indicating discordancy with their family-IQ. Of these patients, those with low IQ had more schizophrenia diagnosis and a trend towards poorer premorbid adjustment in childhood and early adolescence. Whereas FEP patients with low IQ closely resembling their family-IQ were characterized by having the lowest performance in executive functions. CONCLUSIONS: The deviation from the familial cognitive performance may be related to a particular pathological process in SSD. Individuals with low IQ who do not reach their cognitive familial potential show difficulties in adjustment since childhood, probably influenced by environmental factors. Instead, FEP patients with high phenotypic family resemblance might have a more significant genetic burden for the disorder.


Asunto(s)
Trastornos Psicóticos , Esquizofrenia , Adolescente , Humanos , Trastornos Psicóticos/complicaciones , Esquizofrenia/complicaciones , Pruebas de Inteligencia , Cognición , Inteligencia
6.
Commun Biol ; 6(1): 1040, 2023 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-37833414

RESUMEN

Schizophrenia may represent a trade-off in the evolution of human-specific ontogenetic mechanisms that guide neurodevelopment. Human Accelerated Regions (HARs) are evolutionary markers functioning as neurodevelopmental transcription enhancers that have been associated with brain configuration, neural information processing, and schizophrenia risk. Here, we have investigated the influence of HARs' polygenic load on neuroanatomical measures through a case-control approach (128 patients with schizophrenia and 115 controls). To this end, we have calculated the global schizophrenia Polygenic Risk Score (Global PRSSZ) and that specific to HARs (HARs PRSSZ). We have also estimated the polygenic burden restricted to the HARs linked to transcriptional regulatory elements active in the foetal brain (FB-HARs PRSSZ) and the adult brain (AB-HARs PRSSZ). We have explored the main effects of the PRSs and the PRSs x diagnosis interactions on brain regional cortical thickness (CT) and surface area (SA). The results indicate that a higher FB-HARs PRSSZ is associated with patients' lower SA in the lateral orbitofrontal cortex, the superior temporal cortex, the pars triangularis and the paracentral lobule. While noHARs-derived PRSs show an effect on the risk, our neuroanatomical findings suggest that the human-specific transcriptional regulation during the prenatal period underlies SA variability, highlighting the role of these evolutionary markers in the schizophrenia genomic architecture.


Asunto(s)
Esquizofrenia , Adulto , Humanos , Esquizofrenia/genética , Encéfalo/diagnóstico por imagen , Corteza Prefrontal , Herencia Multifactorial , Regulación de la Expresión Génica
7.
Int J Mol Sci ; 24(8)2023 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-37108689

RESUMEN

The role of both cannabis use and genetic background has been shown in the risk for psychosis. However, the effect of the interplay between cannabis and variability at the endocannabinoid receptor genes on the neurobiological underpinnings of psychosis remains inconclusive. Through a case-only design, including patients with a first-episode of psychosis (n = 40) classified as cannabis users (50%) and non-users (50%), we aimed to evaluate the interaction between cannabis use and common genetic variants at the endocannabinoid receptor genes on brain activity. Genetic variability was assessed by genotyping two Single Nucleotide Polymorphisms (SNP) at the cannabinoid receptor type 1 gene (CNR1; rs1049353) and cannabinoid receptor type 2 gene (CNR2; rs2501431). Functional Magnetic Resonance Imaging (fMRI) data were obtained while performing the n-back task. Gene × cannabis interaction models evidenced a combined effect of CNR1 and CNR2 genotypes and cannabis use on brain activity in different brain areas, such as the caudate nucleus, the cingulate cortex and the orbitofrontal cortex. These findings suggest a joint role of cannabis use and cannabinoid receptor genetic background on brain function in first-episode psychosis, possibly through the impact on brain areas relevant to the reward circuit.


Asunto(s)
Cannabis , Trastornos Psicóticos , Humanos , Endocannabinoides , Proyectos Piloto , Trastornos Psicóticos/genética , Encéfalo/diagnóstico por imagen , Receptores de Cannabinoides
8.
Int J Mol Sci ; 24(4)2023 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-36835010

RESUMEN

Schizophrenia is a psychiatric disorder that results from genetic and environmental factors interacting and disrupting neurodevelopmental trajectories. Human Accelerated Regions (HARs) are evolutionarily conserved genomic regions that have accumulated human-specific sequence changes. Thus, studies on the impact of HARs in the context of neurodevelopment, as well as with respect to adult brain phenotypes, have increased considerably in the last few years. Through a systematic approach, we aim to offer a comprehensive review of HARs' role in terms of human brain development, configuration, and cognitive abilities, as well as whether HARs modulate the susceptibility to neurodevelopmental psychiatric disorders such as schizophrenia. First, the evidence in this review highlights HARs' molecular functions in the context of the neurodevelopmental regulatory genetic machinery. Second, brain phenotypic analyses indicate that HAR genes' expression spatially correlates with the regions that suffered human-specific cortical expansion, as well as with the regional interactions for synergistic information processing. Lastly, studies based on candidate HAR genes and the global "HARome" variability describe the involvement of these regions in the genetic background of schizophrenia, but also in other neurodevelopmental psychiatric disorders. Overall, the data considered in this review emphasise the crucial role of HARs in human-specific neurodevelopment processes and encourage future research on this evolutionary marker for a better understanding of the genetic basis of schizophrenia and other neurodevelopmental-related psychiatric disorders. Accordingly, HARs emerge as interesting genomic regions that require further study in order to bridge the neurodevelopmental and evolutionary hypotheses in schizophrenia and other related disorders and phenotypes.


Asunto(s)
Evolución Biológica , Trastornos del Neurodesarrollo , Esquizofrenia , Adulto , Humanos , Encéfalo/crecimiento & desarrollo , Cognición , Genoma , Trastornos del Neurodesarrollo/genética , Esquizofrenia/genética
9.
J Psychiatry Neurosci ; 47(6): E393-E408, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36414327

RESUMEN

BACKGROUND: To study whether there is genetic overlap underlying the risk for schizophrenia spectrum disorders (SSDs) and low intelligence quotient (IQ), we reviewed and summarized the evidence on genetic variants associated with both traits. METHODS: We performed this review in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) and preregistered it in PROSPERO. We searched the Medline databases via PubMed, PsycInfo, Web of Science and Scopus. We included studies in adults with a diagnosis of SSD that explored genetic variants (single nucleotide polymorphisms [SNPs], copy number variants [CNVs], genomic insertions or genomic deletions), estimated IQ and studied the relationship between genetic variability and both traits (SSD and IQ). We synthesized the results and assessed risk of bias using the Quality of Genetic Association Studies (Q-Genie) tool. RESULTS: Fifty-five studies met the inclusion criteria (45 case-control, 9 cross-sectional, 1 cohort), of which 55% reported significant associations for genetic variants involved in IQ and SSD. The SNPs more frequently explored through candidate gene studies were in COMT, DTNBP1, BDNF and TCF4. Through genome-wide association studies, 2 SNPs in CHD7 and GATAD2A were associated with IQ in patients with SSD. The studies on CNVs suggested significant associations between structural variants and low IQ in patients with SSD. LIMITATIONS: Overall, primary studies used heterogeneous IQ measurement tools and had small samples. Grey literature was not screened. CONCLUSION: Genetic overlap between SSD and IQ supports the neurodevelopmental hypothesis of schizophrenia. Most of the risk polymorphisms identified were in genes relevant to brain development, neural proliferation and differentiation, and synaptic plasticity.


Asunto(s)
Esquizofrenia , Adulto , Humanos , Esquizofrenia/genética , Estudio de Asociación del Genoma Completo , Estudios Transversales , Polimorfismo de Nucleótido Simple/genética , Inteligencia/genética
10.
Eur Arch Psychiatry Clin Neurosci ; 272(7): 1229-1239, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35796825

RESUMEN

The CACNA1C and the ZNF804A genes are among the most relevant schizophrenia GWAS findings. Recent evidence shows that the interaction of these genes with the schizophrenia diagnosis modulates brain functional response to a verbal fluency task. To better understand how these genes might influence the risk for schizophrenia, we aimed to study the interplay between CACNA1C and ZNF804A on working memory brain functional correlates. The analyses included functional and behavioural N-back task data (obtained from an fMRI protocol) and CACNA1C-rs1006737 and ZNF804A-rs1344706 genotypes for 78 healthy subjects and 78 patients with schizophrenia (matched for age, sex and premorbid IQ). We tested the effects of the epistasis between these genes as well as of the three-way interaction (CACNA1C × ZNAF804A × diagnosis) on working memory-associated activity (N-back: 2-back vs 1-back). We detected a significant CACNA1C × ZNAF804A interaction on working memory functional response in regions comprising the ventral caudate medially and within the left hemisphere, the superior and inferior orbitofrontal gyrus, the superior temporal pole and the ventral-anterior insula. The individuals with the GWAS-identified risk genotypes (CACNA1C-AA/AG and ZNF804A-AA) displayed a reduced working memory modulation response. This genotypic combination was also associated with opposite brain activity patterns between patients and controls. While further research will help to comprehend the neurobiological mechanisms of this interaction, our data highlight the role of the epistasis between CACNA1C and ZNF804A in the functional mechanisms underlying the pathophysiology of schizophrenia.


Asunto(s)
Esquizofrenia , Canales de Calcio Tipo L/genética , Neuroimagen Funcional , Predisposición Genética a la Enfermedad/genética , Estudio de Asociación del Genoma Completo , Genotipo , Humanos , Factores de Transcripción de Tipo Kruppel/genética , Polimorfismo de Nucleótido Simple/genética , Esquizofrenia/diagnóstico por imagen , Esquizofrenia/genética
11.
Int J Mol Sci ; 23(13)2022 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-35806464

RESUMEN

Included in the neurotrophins family, the Neuritin 1 gene (NRN1) has emerged as an attractive candidate gene for schizophrenia (SZ) since it has been associated with the risk for the disorder and general cognitive performance. In this work, we aimed to further investigate the association of NRN1 with SZ by exploring its role on age at onset and its brain activity correlates. First, we developed two genetic association analyses using a family-based sample (80 early-onset (EO) trios (offspring onset ≤ 18 years) and 71 adult-onset (AO) trios) and an independent case-control sample (120 healthy subjects (HS), 87 EO and 138 AO patients). Second, we explored the effect of NRN1 on brain activity during a working memory task (N-back task; 39 HS, 39 EO and 39 AO; matched by age, sex and estimated IQ). Different haplotypes encompassing the same three Single Nucleotide Polymorphisms(SNPs, rs3763180-rs10484320-rs4960155) were associated with EO in the two samples (GCT, TCC and GTT). Besides, the GTT haplotype was associated with worse N-back task performance in EO and was linked to an inefficient dorsolateral prefrontal cortex activity in subjects with EO compared to HS. Our results show convergent evidence on the NRN1 association with EO both from genetic and neuroimaging approaches, highlighting the role of neurotrophins in the pathophysiology of SZ.


Asunto(s)
Proteínas Ligadas a GPI , Neuropéptidos , Esquizofrenia , Adulto , Proteínas Ligadas a GPI/genética , Humanos , Imagen por Resonancia Magnética , Memoria a Corto Plazo/fisiología , Factores de Crecimiento Nervioso/genética , Neuroimagen , Neuropéptidos/genética , Polimorfismo de Nucleótido Simple , Corteza Prefrontal , Esquizofrenia/diagnóstico , Esquizofrenia/genética
12.
Eur Neuropsychopharmacol ; 60: 38-47, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35635995

RESUMEN

The KCNH2 gene, encoding for a subunit of a voltage-gated potassium channel, has been identified as a key element of neuronal excitability and a promising novel therapeutic target for schizophrenia (SZ). Nonetheless, evidence highlighting the role of KCNH2 on cognitive and brain activity phenotypes comes mainly from studies based on healthy controls (HC). Therefore, we aimed to study the role of KCNH2 on the brain functional differences between patients with SZ and HC. The fMRI sample comprised 78 HC and 79 patients with SZ (matched for age, sex and premorbid IQ). We studied the effect of the polymorphism KCNH2-rs3800779 on attention and working memory-related brain activity, evaluated through the N-back task, in regions with detected diagnostic differences (regression model, controlled for age, sex and premorbid IQ, FEAT-FSL). We report a significant diagnosis x KCNH2 interaction on brain activity (1-back vs baseline contrast) at the medial superior prefrontal cortex (Zmax=3.55, p = 0.00861). In this region, patients with SZ carrying the risk genotype (AA) show a deactivation failure, while HC depict the opposite pattern towards deactivation. The brain region with significant diagnosis x KCNH2 interaction has been previously associated with SZ. The results of this study, in which the role of KCNH2 on fMRI response is analysed for the first time in patients, suggest that KCNH2 variability contributes to inefficient brain activity modulation during the N-back task in affected subjects. These data may pave the way to further understand how KCNH2 genetic variability is related to the pathophysiological mechanisms underlying schizophrenia.


Asunto(s)
Esquizofrenia , Encéfalo/metabolismo , Estudios de Casos y Controles , Canal de Potasio ERG1/genética , Canal de Potasio ERG1/metabolismo , Humanos , Imagen por Resonancia Magnética , Corteza Prefrontal/metabolismo , Esquizofrenia/complicaciones , Esquizofrenia/diagnóstico por imagen , Esquizofrenia/genética
13.
Sci Rep ; 12(1): 7351, 2022 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-35513527

RESUMEN

The DISC1 gene is one of the most relevant susceptibility genes for psychosis. However, the complex genetic landscape of this locus, which includes protective and risk variants in interaction, may have hindered consistent conclusions on how DISC1 contributes to schizophrenia (SZ) liability. Analysis from haplotype approaches and brain-based phenotypes can contribute to understanding DISC1 role in the neurobiology of this disorder. We assessed the brain correlates of DISC1 haplotypes associated with SZ through a functional neuroimaging genetics approach. First, we tested the association of two DISC1 haplotypes, the HEP1 (rs6675281-1000731-rs999710) and the HEP3 (rs151229-rs3738401), with the risk for SZ in a sample of 138 healthy subjects (HS) and 238 patients. This approach allowed the identification of three haplotypes associated with SZ (HEP1-CTG, HEP3-GA and HEP3-AA). Second, we explored whether these haplotypes exerted differential effects on n-back associated brain activity in a subsample of 70 HS compared to 70 patients (diagnosis × haplotype interaction effect). These analyses evidenced that HEP3-GA and HEP3-AA modulated working memory functional response conditional to the health/disease status in the cuneus, precuneus, middle cingulate cortex and the ventrolateral and dorsolateral prefrontal cortices. Our results are the first to show a diagnosis-based effect of DISC1 haplotypes on working memory-related brain activity, emphasising its role in SZ.


Asunto(s)
Esquizofrenia , Encéfalo/metabolismo , Haplotipos , Humanos , Imagen por Resonancia Magnética , Memoria a Corto Plazo , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Polimorfismo de Nucleótido Simple , Esquizofrenia/diagnóstico por imagen , Esquizofrenia/genética
15.
Hum Brain Mapp ; 43(1): 385-398, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-33073925

RESUMEN

The hippocampus consists of anatomically and functionally distinct subfields that may be differentially involved in the pathophysiology of bipolar disorder (BD). Here we, the Enhancing NeuroImaging Genetics through Meta-Analysis Bipolar Disorder workinggroup, study hippocampal subfield volumetry in BD. T1-weighted magnetic resonance imaging scans from 4,698 individuals (BD = 1,472, healthy controls [HC] = 3,226) from 23 sites worldwide were processed with FreeSurfer. We used linear mixed-effects models and mega-analysis to investigate differences in hippocampal subfield volumes between BD and HC, followed by analyses of clinical characteristics and medication use. BD showed significantly smaller volumes of the whole hippocampus (Cohen's d = -0.20), cornu ammonis (CA)1 (d = -0.18), CA2/3 (d = -0.11), CA4 (d = -0.19), molecular layer (d = -0.21), granule cell layer of dentate gyrus (d = -0.21), hippocampal tail (d = -0.10), subiculum (d = -0.15), presubiculum (d = -0.18), and hippocampal amygdala transition area (d = -0.17) compared to HC. Lithium users did not show volume differences compared to HC, while non-users did. Antipsychotics or antiepileptic use was associated with smaller volumes. In this largest study of hippocampal subfields in BD to date, we show widespread reductions in nine of 12 subfields studied. The associations were modulated by medication use and specifically the lack of differences between lithium users and HC supports a possible protective role of lithium in BD.


Asunto(s)
Trastorno Bipolar/diagnóstico por imagen , Trastorno Bipolar/patología , Hipocampo/diagnóstico por imagen , Hipocampo/patología , Imagen por Resonancia Magnética , Neuroimagen , Trastorno Bipolar/tratamiento farmacológico , Genética , Hipocampo/efectos de los fármacos , Humanos
16.
Hum Brain Mapp ; 43(1): 414-430, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-33027543

RESUMEN

First-degree relatives of patients diagnosed with schizophrenia (SZ-FDRs) show similar patterns of brain abnormalities and cognitive alterations to patients, albeit with smaller effect sizes. First-degree relatives of patients diagnosed with bipolar disorder (BD-FDRs) show divergent patterns; on average, intracranial volume is larger compared to controls, and findings on cognitive alterations in BD-FDRs are inconsistent. Here, we performed a meta-analysis of global and regional brain measures (cortical and subcortical), current IQ, and educational attainment in 5,795 individuals (1,103 SZ-FDRs, 867 BD-FDRs, 2,190 controls, 942 schizophrenia patients, 693 bipolar patients) from 36 schizophrenia and/or bipolar disorder family cohorts, with standardized methods. Compared to controls, SZ-FDRs showed a pattern of widespread thinner cortex, while BD-FDRs had widespread larger cortical surface area. IQ was lower in SZ-FDRs (d = -0.42, p = 3 × 10-5 ), with weak evidence of IQ reductions among BD-FDRs (d = -0.23, p = .045). Both relative groups had similar educational attainment compared to controls. When adjusting for IQ or educational attainment, the group-effects on brain measures changed, albeit modestly. Changes were in the expected direction, with less pronounced brain abnormalities in SZ-FDRs and more pronounced effects in BD-FDRs. To conclude, SZ-FDRs and BD-FDRs show a differential pattern of structural brain abnormalities. In contrast, both had lower IQ scores and similar school achievements compared to controls. Given that brain differences between SZ-FDRs and BD-FDRs remain after adjusting for IQ or educational attainment, we suggest that differential brain developmental processes underlying predisposition for schizophrenia or bipolar disorder are likely independent of general cognitive impairment.


Asunto(s)
Trastorno Bipolar/patología , Disfunción Cognitiva/patología , Escolaridad , Predisposición Genética a la Enfermedad , Inteligencia/fisiología , Neuroimagen , Esquizofrenia/patología , Trastorno Bipolar/complicaciones , Trastorno Bipolar/diagnóstico por imagen , Disfunción Cognitiva/diagnóstico por imagen , Familia , Humanos , Imagen por Resonancia Magnética , Esquizofrenia/complicaciones , Esquizofrenia/diagnóstico por imagen , Esquizofrenia/etiología
17.
Eur Child Adolesc Psychiatry ; 29(12): 1705-1716, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32052174

RESUMEN

We analysed the familial aggregation (familiality) of cognitive dimensions and explored their role as liability markers for early-onset bipolar disorder (EOBD). The sample comprised 99 subjects from 26 families, each with an offspring diagnosed with EOBD. Four cognitive dimensions were assessed: reasoning skills; attention and working memory; memory; and executive functions. Their familiality was investigated in the total sample and in a subset of healthy relatives. The intra-family resemblance score (IRS), a family-based index of the similarity of cognitive performance among family members, was calculated. Familiality was detected for the attention and working memory (AW) dimension in the total sample (ICC = 0.37, p = 0.0004) and in the subsample of healthy relatives (ICC = 0.37, p = 0.016). The IRS reflected that there are families with similar AW mean scores (either high or low) and families with heterogeneous scores. Families with the most common background for the AW dimension (IRS > 0) were selected and dichotomized in two groups according to the mean family AW score. This allowed differentiating families whose members had similar high scores than those with similar low scores: both patients (t = - 4.82, p = 0.0005) and relatives (t = - 5.04, p < 0.0001) of the two groups differed in their AW scores. AW dimension showed familial aggregation, suggesting its putative role as a familial vulnerability marker for EOBD. The IRS estimation allowed the identification of families with homogeneous scores for this dimension. This represents a first step towards the investigation of the underlying mechanisms of AW dimension and the identification of etiological subgroups.


Asunto(s)
Trastorno Bipolar/psicología , Cognición/fisiología , Familia/psicología , Adolescente , Femenino , Humanos , Masculino , Persona de Mediana Edad
18.
Mol Psychiatry ; 25(9): 2130-2143, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-30171211

RESUMEN

Bipolar disorders (BDs) are among the leading causes of morbidity and disability. Objective biological markers, such as those based on brain imaging, could aid in clinical management of BD. Machine learning (ML) brings neuroimaging analyses to individual subject level and may potentially allow for their diagnostic use. However, fair and optimal application of ML requires large, multi-site datasets. We applied ML (support vector machines) to MRI data (regional cortical thickness, surface area, subcortical volumes) from 853 BD and 2167 control participants from 13 cohorts in the ENIGMA consortium. We attempted to differentiate BD from control participants, investigated different data handling strategies and studied the neuroimaging/clinical features most important for classification. Individual site accuracies ranged from 45.23% to 81.07%. Aggregate subject-level analyses yielded the highest accuracy (65.23%, 95% CI = 63.47-67.00, ROC-AUC = 71.49%, 95% CI = 69.39-73.59), followed by leave-one-site-out cross-validation (accuracy = 58.67%, 95% CI = 56.70-60.63). Meta-analysis of individual site accuracies did not provide above chance results. There was substantial agreement between the regions that contributed to identification of BD participants in the best performing site and in the aggregate dataset (Cohen's Kappa = 0.83, 95% CI = 0.829-0.831). Treatment with anticonvulsants and age were associated with greater odds of correct classification. Although short of the 80% clinically relevant accuracy threshold, the results are promising and provide a fair and realistic estimate of classification performance, which can be achieved in a large, ecologically valid, multi-site sample of BD participants based on regional neurostructural measures. Furthermore, the significant classification in different samples was based on plausible and similar neuroanatomical features. Future multi-site studies should move towards sharing of raw/voxelwise neuroimaging data.


Asunto(s)
Trastorno Bipolar , Trastorno Bipolar/diagnóstico por imagen , Encéfalo/diagnóstico por imagen , Humanos , Aprendizaje Automático , Imagen por Resonancia Magnética , Neuroimagen
19.
Eur Arch Psychiatry Clin Neurosci ; 270(4): 433-442, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30607529

RESUMEN

A deficit in task-related functional connectivity modulation from electroencephalogram (EEG) has been described in schizophrenia. The use of measures of neuronal connectivity as an intermediate phenotype may allow identifying genetic factors involved in these deficits, and therefore, establishing underlying pathophysiological mechanisms. Genes involved in neuronal excitability and previously associated with the risk for schizophrenia may be adequate candidates in relation to functional connectivity alterations in schizophrenia. The objective was to study the association of two genes of voltage-gated ion channels (CACNA1C and KCNH2) with the functional modulation of the cortical networks measured with EEG and graph-theory parameter during a cognitive task, both in individuals with schizophrenia and healthy controls. Both CACNA1C (rs1006737) and KCNH2 (rs3800779) were genotyped in 101 controls and 50 schizophrenia patients. Small-world index (SW) was calculated from EEG recorded during an odd-ball task in two different temporal windows (pre-stimulus and response). Modulation was defined as the difference in SW between both windows. Genetic, group and their interaction effects on SW in the pre-stimulus window and in modulation were evaluated using ANOVA. The CACNA1C genotype was not associated with SW properties. KCNH2 was significantly associated with SW modulation. Healthy subjects showed a positive SW modulation irrespective of the KCNH2 genotype, whereas within patients allele-related differences were observed. Patients carrying the KCNH2 risk allele (A) presented a negative SW modulation and non-carriers showed SW modulation similar to the healthy subjects. Our data suggest that KCNH2 genotype contributes to the efficient modulation of brain electrophysiological activity during a cognitive task in schizophrenia patients.


Asunto(s)
Canales de Calcio Tipo L/genética , Corteza Cerebral/fisiopatología , Conectoma , Canal de Potasio ERG1/genética , Red Nerviosa/fisiopatología , Esquizofrenia/genética , Esquizofrenia/fisiopatología , Adulto , Atención/fisiología , Percepción Auditiva/fisiología , Electroencefalografía , Femenino , Genotipo , Humanos , Masculino , Polimorfismo de Nucleótido Simple , Riesgo , Adulto Joven
20.
Psychol Med ; 50(8): 1300-1315, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-31172897

RESUMEN

BACKGROUND: A multitude of risk/protective factors for anxiety and obsessive-compulsive disorders have been proposed. We conducted an umbrella review to summarize the evidence of the associations between risk/protective factors and each of the following disorders: specific phobia, social anxiety disorder, generalized anxiety disorder, panic disorder, and obsessive-compulsive disorder, and to assess the strength of this evidence whilst controlling for several biases. METHODS: Publication databases were searched for systematic reviews and meta-analyses examining associations between potential risk/protective factors and each of the disorders investigated. The evidence of the association between each factor and disorder was graded into convincing, highly suggestive, suggestive, weak, or non-significant according to a standardized classification based on: number of cases (>1000), random-effects p-values, 95% prediction intervals, confidence interval of the largest study, heterogeneity between studies, study effects, and excess of significance. RESULTS: Nineteen systematic reviews and meta-analyses were included, corresponding to 216 individual studies covering 427 potential risk/protective factors. Only one factor association (early physical trauma as a risk factor for social anxiety disorder, OR 2.59, 95% CI 2.17-3.1) met all the criteria for convincing evidence. When excluding the requirement for more than 1000 cases, five factor associations met the other criteria for convincing evidence and 22 met the remaining criteria for highly suggestive evidence. CONCLUSIONS: Although the amount and quality of the evidence for most risk/protective factors for anxiety and obsessive-compulsive disorders is limited, a number of factors significantly increase the risk for these disorders, may have potential prognostic ability and inform prevention.


Asunto(s)
Trastornos de Ansiedad/epidemiología , Trastorno Obsesivo Compulsivo/epidemiología , Humanos , Factores Protectores , Factores de Riesgo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...