Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Acc Chem Res ; 56(6): 625-630, 2023 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-36719846

RESUMEN

ConspectusIn this brief look at the history of liquid microjets, I recollect some personal reminiscences on initial challenges for introduction of this method, as well as unexpected problems and exemplary results using this new tool for liquid evaporation and photoelectron spectroscopy studies.Many efficient and direct, atomic level diagnostic instruments in use at solid state surfaces and in gas-phase atom or cluster studies require high vacuum. They have therefore not been applied to investigations of aqueous solutions because liquid water both strongly evaporates and rapidly freezes in vacuum. Only fairly recently, over the past three decades, have liquid microjets been considered as practicable targets for research on liquid-water interfaces in vacuum. The working principle is analogous to the functioning of a free molecular beam source, where molecules enter through a small aperture into a vacuum without being disturbed by subsequent collisions in their original Maxwellian velocity distribution. Similarly, above a microjet surface in vacuum, water vapor molecules do not interact with each other, or with different probe particles, as long as the liquid jet diameter is small in relation to the mean free path of the liquids' vapor at equilibrium conditions. For pure liquid water, this constraint is Djet < λvap < 10 µm for 6.1 mbar vapor pressure at the triple point of water. A high streaming velocity of the liquid jet, >50 m/s, delays freezing and exposes a steadily renewed fresh vacuum surface for experiments.For experimental verification of the microjet free surface concept, H2O vapor velocities were measured in a molecular beam time-of-flight experiment. These studies showed Maxwellian velocity distributions with the expected local water-jet temperatures for 5 and 10 µm jets, whereas larger liquid jet diameters of 50 µm exhibit narrowed vapor velocity profiles. This narrowing is the known signature of incipient, collision dominated, supersonic hydrodynamic expansions in nozzle beam sources. As a completely unexpected new result in evaporation studies of carboxylic acid solutions, freely evaporating acetic acid dimers showed apparent non-equilibrium liquid surface source temperatures several hundred kelvin above the simultaneously measured monomer temperatures, a phenomenon shown to be correlated with surface tension.Continuing with improvements, the vacuum water microjets were implemented inside a photoelectron spectroscopy apparatus that was modified for handling large amounts of water vapor. After initial complications with liquid jet charging phenomena, the first partial liquid-water photoelectron spectra were recorded using 21 eV photons from a He I discharge lamp. In the next step, the equipment was taken to a synchrotron radiation beamline at BESSY II, resulting in substantial improvements of signal intensity and in photon tunability for narrow band monochromatic soft X-rays up to 1 keV. Two early examples of these continuing experiments are considered, briefly, for aqueous alkali halide salt solutions and for the pH-value dependent protonation of an NH2/NH3+ group in an amino acid directly in a photoelectron spectrum of a solution.In conclusion, liquid microjets have opened up a completely new approach to studies of arbitrary liquids with chemical and biological relevance.

2.
J Am Chem Soc ; 137(1): 201-9, 2015 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-25551179

RESUMEN

Oxidative damage to DNA and hole transport between nucleobases in oxidized DNA are important processes in lesion formation for which surprisingly poor thermodynamic data exist, the relative ease of oxidizing the four nucleobases being one such example. Theoretical simulations of radiation damage and charge transport in DNA depend on accurate values for vertical ionization energies (VIEs), reorganization energies, and standard reduction potentials. Liquid-jet photoelectron spectroscopy can be used to directly study the oxidation half-reaction. The VIEs of nucleic acid building blocks are measured in their native buffered aqueous environment. The experimental investigation of purine and pyrimidine nucleotides, nucleosides, pentose sugars, and inorganic phosphate demonstrates that photoelectron spectra of nucleotides arise as a spectral sum over their individual chemical components; that is, the electronic interactions between each component are effectively screened from one another by water. Electronic structure theory affords the assignment of the lowest energy photoelectron band in all investigated nucleosides and nucleotides to a single ionizing transition centered solely on the nucleobase. Thus, combining the measured VIEs with theoretically determined reorganization energies allows for the spectroscopic determination of the one-electron redox potentials that have been difficult to establish via electrochemistry.


Asunto(s)
ADN/química , Nucleótidos/química , Purinas/química , Pirimidinas/química , Teoría Cuántica , Oxidación-Reducción , Espectroscopía de Fotoelectrones , Agua/química
3.
Struct Dyn ; 2(5): 054301, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26798824

RESUMEN

We present a liquid flatjet system for solution phase soft-x-ray spectroscopy. The flatjet set-up utilises the phenomenon of formation of stable liquid sheets upon collision of two identical laminar jets. Colliding the two single water jets, coming out of the nozzles with 50 µm orifices, under an impact angle of 48° leads to double sheet formation, of which the first sheet is 4.6 mm long and 1.0 mm wide. The liquid flatjet operates fully functional under vacuum conditions (<10(-3) mbar), allowing soft-x-ray spectroscopy of aqueous solutions in transmission mode. We analyse the liquid water flatjet thickness under atmospheric pressure using interferomeric or mid-infrared transmission measurements and under vacuum conditions by measuring the absorbance of the O K-edge of water in transmission, and comparing our results with previously published data obtained with standing cells with Si3N4 membrane windows. The thickness of the first liquid sheet is found to vary between 1.4-3 µm, depending on the transverse and longitudinal position in the liquid sheet. We observe that the derived thickness is of similar magnitude under 1 bar and under vacuum conditions. A catcher unit facilitates the recycling of the solutions, allowing measurements on small sample volumes (∼10 ml). We demonstrate the applicability of this approach by presenting measurements on the N K-edge of aqueous NH4 (+). Our results suggest the high potential of using liquid flatjets in steady-state and time-resolved studies in the soft-x-ray regime.

4.
Phys Rev Lett ; 111(17): 173005, 2013 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-24206487

RESUMEN

Photoelectron angular distributions (PADs) from the liquid-water surface and from bulk liquid water are reported for water oxygen-1s ionization. Although less so than for the gas phase, the measured PADs from the liquid are remarkably anisotropic, even at electron kinetic energies lower than 100 eV, when elastic scattering cross sections for the outgoing electrons with other water molecules are large. The PADs reveal that theoretical estimates of the inelastic mean free path are likely too long at low kinetic energies, and hence the electron probing depth in water, near threshold ionization, appears to be considerably smaller than so far assumed.

5.
Phys Chem Chem Phys ; 13(28): 12720-3, 2011 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-21687886

RESUMEN

X-Ray photoelectron spectroscopy has been extended to colloidal nanoparticles in aqueous solution using a liquid microjet in combination with synchrotron radiation, which allowed for depth-dependent measurements. Two distinct electronic structures are evident in the Si 2p photoelectron spectrum of 7 nm SiO(2)-nanoparticles at pH 10. A core-shell model is proposed where only the outermost layer of SiO(2) nanoparticles, which is mainly composed of deprotonated silanol groups, >Si-O(-), interacts with the solution. The core of the nanoparticles is not affected by the solvation process and retains the same electronic structure as measured in vacuum. Future opportunities of this new experiment are also highlighted.

7.
J Am Chem Soc ; 133(9): 3120-30, 2011 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-21319819

RESUMEN

The local electronic structure of glycine in neutral, basic, and acidic aqueous solution is studied experimentally by X-ray photoelectron spectroscopy and theoretically by molecular dynamics simulations accompanied by first-principle electronic structure and spectrum calculations. Measured and computed nitrogen and carbon 1s binding energies are assigned to different local atomic environments, which are shown to be sensitive to the protonation/deprotonation of the amino and carboxyl functional groups at different pH values. We report the first accurate computation of core-level chemical shifts of an aqueous solute in various protonation states and explicitly show how the distributions of photoelectron binding energies (core-level peak widths) are related to the details of the hydrogen bond configurations, i.e. the geometries of the water solvation shell and the associated electronic screening. The comparison between the experiments and calculations further enables the separation of protonation-induced (covalent) and solvent-induced (electrostatic) screening contributions to the chemical shifts in the aqueous phase. The present core-level line shape analysis facilitates an accurate interpretation of photoelectron spectra from larger biomolecular solutes than glycine.


Asunto(s)
Electrones , Glicina/química , Concentración de Iones de Hidrógeno , Simulación de Dinámica Molecular , Espectroscopía de Fotoelectrones , Agua/química
8.
Nat Chem ; 2(4): 274-9, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21124507

RESUMEN

Solvated electrons in liquid water are one of the seemingly simplest, but most important, transients in chemistry and biology, but they have resisted disclosing important information about their energetics, binding motifs and dynamics. Here we report the first ultrafast liquid-jet photoelectron spectroscopy measurements of solvated electrons in liquid water. The results prove unequivocally the existence of solvated electrons bound at the water surface and of solvated electrons in the bulk solution, with vertical binding energies of 1.6 eV and 3.3 eV, respectively, and with lifetimes longer than 100 ps. The unexpectedly long lifetime of solvated electrons bound at the water surface is attributed to a free-energy barrier that separates surface and interior states. Beyond constituting important energetic and kinetic benchmark and reference data, the results also help to understand the mechanisms of a number of very efficient electron-transfer processes in nature.


Asunto(s)
Electrones , Solventes/química , Agua/química , Cinética , Espectroscopía de Fotoelectrones , Propiedades de Superficie , Termodinámica
9.
J Phys Chem B ; 114(28): 9173-82, 2010 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-20666394

RESUMEN

Energy-resolved photoemission spectroscopy and density functional molecular dynamics simulations are combined to construct an energy level diagram for the Mn(2+/3+) redox reaction in aqueous solution. Two peaks centered at 8.88 and 10.26 eV electron binding energies can be assigned to the Mn2+ hexa-aquo complex with a peak area ratio of 2:2.83. Using the notation of crystal field theory, the peak at lower energies can be interpreted as arising from ionization from the e(g) levels (highest occupied molecular orbital, HOMO), and the peak at higher energies are from ionization of the t(2g) levels. The difference corresponds to the average crystal field splitting, 1.38 eV. From the position of the HOMO level and the absolute redox potential, an experimental value for the reorganization free energy of the aqueous Mn3+ hexa-aquo complex is estimated to be 2.98 eV. Density functional molecular dynamics simulations can reproduce the experimental vertical ionization energy, redox free energy, and reorganization free energies fairly well, provided that the absolute potential shift in periodic boundary conditions, finite size effects, and inaccuracies of the exchange correlation functional are taken into account. Most strikingly, in the simulations, we observe spontaneous and reversible deprotonation of the aqueous Mn3+ hexa-aquo complex to form MnOH(H2O)5(2+) + H+, in line with the low experimental pKa value of this ion. The interconversion between protonation states leads to interesting redox phenomena for aqueous Mn3+, culminating in a bimodal thermal distribution of the electron affinity.

10.
J Am Chem Soc ; 131(44): 16127-37, 2009 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-19831354

RESUMEN

Photoelectron spectroscopy and density functional molecular dynamics simulations are combined to quantify and characterize the redox properties of Ru(bpy)32+/3+ and Ru(H2O)62+/3+ in aqueous solution. We report the energy-resolved photoelectron spectrum of aqueous Ru(bpy)32+ at 200 eV photon energy. From the peak position of the highest molecular orbital at 6.81 eV, an experimental value for the single-ion reorganization free energy of Ru(bpy)33+ is determined to be 1.21 +/- 0.04 eV. Density functional molecular dynamics calculations give a value of 0.84-1.20 eV for Ru(bpy)33+ and 1.92-2.42 eV for Ru(H2O)63+ depending on the method used to extrapolate the results to the infinite dilution limit. Since linear response is an excellent approximation for these systems, we report the same reorganization free energies for the divalent ions. The relatively small reorganization free energy of Ru(bpy)33+ is a consequence of the small changes in the Ru-N bond lengths upon reduction (0.04 eV inner sphere contribution) and of the large hydrophobic cavity formed by the bulky bipyridine ligands, which effectively reduces the dipolar response of the solvent in qualitative agreement with continuum theory. The large difference in redox potential between Ru(bpy)32+/3+ and Ru(H2O)62+/3+ (1 eV) is mainly associated with the difference in reorganization free energy rather than vertical ionization energy. Finally, the measured photoelectron spectrum of Ru(bpy)32+ is compared with the Kohn-Sham density of states for interpretation of occupied as well as computed virtual energy levels. This computational approach, in conjunction with first-ever photoelectron spectroscopy measurements of an aqueous transition metal ion, provides a quantitative benchmark for understanding the effect of water on metal redox potential and lays the groundwork for future studies of redox properties.

11.
J Am Chem Soc ; 131(24): 8354-5, 2009 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-19530722

RESUMEN

Depth-resolved ion spatial distributions of nitrate and nitrite anions in aqueous solution have been quantitatively measured using X-ray photoemission spectroscopy on a 15 microm aqueous liquid jet containing 3 M NaNO(3), 3 M NaNO(2), or an equimolar mixture of the two. The surface region, which extends to photoelectron kinetic energies of 400-500 eV, is partially depleted in anions relative to the bulk 3 M concentration. The nitrate and nitrite solutions exhibit similar depth-dependent anion profiles. The results presented here are compared with recent molecular dynamics simulations of a NaNO(3) solution and are found to agree at high photoelectron kinetic energies. At shallower probe depths, the experiment measured a surface anion concentration less than that predicted by theory. Possible origins of the discrepancy are discussed in terms of the confined size of the simulation box and uncertainties that remain in regard to the inelastic mean free path of photoelectrons in aqueous media. The importance of our findings is discussed in relation to the observed increase in photochemical activity of nitrate-containing aerosols in the atmosphere.

12.
J Am Chem Soc ; 131(18): 6460-7, 2009 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-19374336

RESUMEN

Vertical ionization energies of the nucleosides cytidine and deoxythymidine in water, the lowest ones amounting in both cases to 8.3 eV, are obtained from photoelectron spectroscopy measurements in aqueous microjets. Ab initio calculations employing a nonequilibrium polarizable continuum model quantitatively reproduce the experimental spectra and provide molecular interpretation of the individual peaks of the photoelectron spectrum, showing also that lowest ionization originates from the base. Comparison of calculated vertical ionization potentials of pyrimidine bases, nucleosides, and nucleotides in water and in the gas phase underlines the dramatic effect of bulk hydration on the electronic structure. In the gas phase, the presence of sugar and, in particular, of phosphate has a strong effect on the energetics of ionization of the base. Upon bulk hydration, the ionization potential of the base in contrast becomes rather insensitive to the presence of the sugar and phosphate, which indicates a remarkable screening ability of the aqueous solvent. Accurate aqueous-phase vertical ionization potentials provide a significant improvement to the corrected gas-phase values used in the literature and represent important information in assessing the threshold energies for photooxidation and oxidation free energies of solvent-exposed DNA components. Likewise, such energetic data should allow improved assessment of delocalization and charge-hopping mechanisms in DNA ionized by radiation.


Asunto(s)
Técnicas Electroquímicas , Modelos Moleculares , Nucleósidos de Pirimidina/química , ADN/química , Iones/química , Modelos Teóricos , Ácidos Nucleicos/química , Análisis Espectral , Agua
13.
Faraday Discuss ; 141: 67-79; discussion 81-98, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19227352

RESUMEN

Electron spectroscopy for chemical analysis (ESCA) is a powerful tool for the quantitative analysis of the composition and the chemical environment of molecular systems. Due to the lack of compatibility of liquids and vacuum, liquid-phase ESCA is much less well established. The chemical shift in the static ESCA approach is a particularly powerful observable quantity for probing electron orbital energies in molecules in different molecular environments. Employing high harmonics of 800 nm (40 eV), near-infrared femtosecond pulses, and liquid-water microbeams in vacuum we were able to add the dimension of time to the liquid interface ESCA technique. Tracing time-dependent chemical shifts and energies of valence electrons in liquid interfacial water in time, we have investigated the timescale and molecular signatures of laser-induced liquid-gas phase transitions on a picosecond timescale.


Asunto(s)
Transición de Fase , Soluciones/química , Análisis Espectral/métodos , Agua/química , Electrones , Rayos Láser , Análisis Espectral/instrumentación , Propiedades de Superficie , Termodinámica , Vacio
14.
Nature ; 455(7209): 89-91, 2008 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-18769437

RESUMEN

The hydroxide ion plays an important role in many chemical and biochemical processes in aqueous solution. But our molecular-level understanding of its unusual and fast transport in water, and of the solvation patterns that allow fast transport, is far from complete. One proposal seeks to explain the properties and behaviour of the hydroxide ion by essentially regarding it as a water molecule that is missing a proton, and by inferring transport mechanisms and hydration structures from those of the excess proton. A competing proposal invokes instead unique and interchanging hydroxide hydration complexes, particularly the hypercoordinated OH(-)(H(2)O)(4) species and tri-coordinated OH(-)(H(2)O)(3) that can form a transient hydrogen bond between the H atom of the OH(-) and a neighbouring water molecule. Here we report measurements of core-level photoelectron emission and intermolecular Coulombic decay for an aqueous hydroxide solution, which show that the hydrated hydroxide ion is capable of transiently donating a hydrogen bond to surrounding water molecules. In agreement with recent experimental studies of hydroxide solutions, our finding thus supports the notion that the hydration structure of the hydroxide ion cannot be inferred from that of the hydrated excess proton.

15.
J Am Chem Soc ; 130(26): 8150-1, 2008 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-18540604

RESUMEN

The photoelectron spectra of aqueous imidazole are presented, and the N 1s and C 1s binding energies are assigned aided by density functional theory calculations. The chemical equivalency of the two nitrogens of the cationic form is directly identified by the occurrence of a single N 1s photoelectron peak, which results from the delocalization of the positive charge over the molecule as a consequence of the Cv symmetry of the system. In contrast to NMR measurements, the photoemission process is faster than the rapid proton exchange in the aqueous environment, making the pseudoequivalent nitrogens of the neutral state clearly distinguishable with a N 1s binding energy shift of 1.7 eV.

16.
J Am Chem Soc ; 130(22): 7130-8, 2008 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-18461939

RESUMEN

Charge-transfer-to-solvent (CTTS) excited states of aqueous chloride are studied by a novel experimental approach based on resonant inner-shell photoexcitation, Cl(-)aq 2p --> e(i), i = 1-4, which denotes a series of excitations to lowest and higher CTTS states. These states are clearly identified through the occurrence of characteristic spectator Auger decays to double Cl 3p valence-hole states, where the CTTS states can be more stabilized as compared to single Cl(-)aq 2p core excitations and optical valence excitations. Furthermore, we have found for the first time that the CTTS electron e(i) bound by a single Cl 2p hole not only behaves as a spectator e(i) --> e'(i), bound by a double valence-hole state before relaxation of the excited electron (i) itself, but also shows electron dynamics to the relaxed lowest state, e(i) --> e'(1*). This interpretation is supported by ab initio calculations. The key to performing photoelectron and Auger-electron spectroscopy studies from aqueous solutions is the use of a liquid microjet in ultrahigh vacuum in conjunction with synchrotron radiation.

17.
J Am Chem Soc ; 129(45): 14068-73, 2007 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-17949088

RESUMEN

We demonstrate the applicability of X-ray photoelectron spectroscopy to obtain charge- and site-specific electronic structural information of biomolecules in aqueous solution. Changing the pH of an aqueous solution of lysine from basic to acidic results in nitrogen 1s and carbon 1s chemical shifts to higher binding energies. These shifts are associated with the sequential protonation of the two amino groups, which affects both charge state and hydrogen bonding to the surrounding water molecules. The N1s chemical shift is 2.2 eV, and for carbon atoms directly neighboring a nitrogen the shift for C1s is approximately 0.4 eV. The experimental binding energies agree reasonably with our calculated energies of lysine(aq) for different pH values.


Asunto(s)
Lisina/química , Protones , Espectrofotometría/normas , Concentración de Iones de Hidrógeno , Estructura Molecular , Estándares de Referencia , Soluciones/química , Espectrofotometría/métodos , Agua/química , Rayos X
18.
J Chem Phys ; 127(9): 094501, 2007 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-17824742

RESUMEN

We have measured resonant and off-resonant Auger-electron spectra of liquid water. Continuumlike transitions near and above the O1s vertical ionization energy are identified by the characteristic normal Auger-electron spectra. On the contrary, well-resolved spectator shifts of the main Auger-electron peak are observed at the liquid-water O1s absorption main edge and near the absorption pre-edge. The shifts of 1.4 and 1.9 eV arise from the localized nature of the excitation. Excited-state localization/delocalization is also discussed for the analogous vacuum ultraviolet (VUV) transitions, and we point out the similarities between x-ray and VUV absorption spectra of liquid water.


Asunto(s)
Enlace de Hidrógeno , Hidrógeno/química , Técnicas de Sonda Molecular , Análisis Espectral/métodos , Resonancia por Plasmón de Superficie/métodos , Agua/química , Electrones , Soluciones
19.
J Chem Phys ; 126(12): 124504, 2007 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-17411141

RESUMEN

The authors report on photoelectron emission spectroscopy measurements of the oxygen 1s orbital of liquid water, using a liquid microjet in ultrahigh vacuum. By suitably changing the soft x-ray photon energy, within 600-1200 eV, the electron probing depth can be considerably altered as to either predominantly access the surface or predominantly bulk water molecules. The absolute probing depth in liquid water was inferred from the evolution of the O1s signal and from comparison with aqueous salt solution. The presence of two distinctive components in the core-level photoelectron spectrum, with significantly different binding energies, is revealed. The dominant contribution, at a vertical binding energy of 538.1 eV, was found in bulk and surface sensitive spectra. A weaker component at 536.6 eV binding energy appears to be present only in bulk water. Hartree-Fock calculations of O1s binding energies in different geometric arrangements of the water network are presented to rationalize the experimental distribution of O1s electron binding energies.


Asunto(s)
Agua/química , Enlace de Hidrógeno , Espectrofotometría
20.
Chem Rev ; 106(4): 1176-211, 2006 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-16608177
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...