Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 154
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
RSC Adv ; 14(18): 12781-12795, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38645514

RESUMEN

Upcycling Covid19 plastic waste into valuable carbonaceous materials for energy storage applications is a sustainable and green approach to minimize the burden of waste plastic on the environment. Herein, we developed a facile single step activation technique for producing activated carbon consisting of spherical flower like carbon nanosheets and amorphous porous flakes from used PET [poly(ethylene terephthalate)] face shields for supercapacitor applications. The as-obtained activated carbon exhibited a high specific surface area of 1571 m2 g-1 and pore volume of 1.64 cm3 g-1. The specific capacitance of these carbon nanostructure-coated stainless steel electrodes reached 228.2 F g-1 at 1 A g-1 current density with excellent charge transport features and good rate capability in 1 M Na2SO4 aqueous electrolyte. We explored the slot-die coating technique for large-area coatings of flexible high-performance activated carbon electrodes with special emphasis on optimizing binder concentration. Significant improvement in electrochemical performance was achieved for the electrodes with 15 wt% Nafion concentration. The flexible supercapacitors fabricated using these electrodes showed high energy and power density of 21.8 W h kg-1 and 20 600 W kg-1 respectively, and retained 96.2% of the initial capacitance after 10 000 cycles at 2 A g-1 current density. The present study provides a promising sustainable approach for upcycling PET plastic waste for large area printable supercapacitors.

2.
Toxicol Sci ; 199(2): 203-209, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38521541

RESUMEN

Drug-induced liver injury (DILI) is a challenge in clinical medicine and drug development. Highly sensitive novel biomarkers have been identified for detecting DILI following a paracetamol overdose. The study objective was to evaluate biomarker performance in a 14-day trial of therapeutic dose paracetamol. The PATH-BP trial was a double-blind, placebo-controlled, crossover study. Individuals (n = 110) were randomized to receive 1 g paracetamol 4× daily or matched placebo for 2 weeks followed by a 2-week washout before crossing over to the alternate treatment. Blood was collected on days 0 (baseline), 4, 7, and 14 in both arms. Alanine transaminase (ALT) activity was measured in all patients. MicroRNA-122 (miR-122), cytokeratin-18 (K18), and glutamate dehydrogenase (GLDH) were measured in patients who had an elevated ALT on paracetamol treatment (≥50% from baseline). ALT increased in 49 individuals (45%). All 3 biomarkers were increased at the time of peak ALT (K18 paracetamol arm: 18.9 ± 9.7 ng/ml, placebo arm: 11.1 ± 5.4 ng/ml, ROC-AUC = 0.80, 95% CI 0.71-0.89; miR-122: 15.1 ± 12.9fM V 4.9 ± 4.7fM, ROC-AUC = 0.83, 0.75-0.91; and GLDH: 24.6 ± 31.1U/l V 12.0 ± 11.8U/l, ROC-AUC = 0.66, 0.49-0.83). All biomarkers were correlated with ALT (K18 r = 0.68, miR-122 r = 0.67, GLDH r = 0.60). To assess sensitivity, biomarker performance was analyzed on the visit preceding peak ALT (mean 3 days earlier). K18 identified the subsequent ALT increase (K18 ROC-AUC = 0.70, 0.59-0.80; miR-122 ROC-AUC = 0.60, 0.49-0.72, ALT ROC-AUC = 0.59, 0.48-0.70; GLDH ROC-AUC = 0.70, 0.50-0.90). Variability was lowest for ALT and K18. In conclusion, K18 was more sensitive than ALT, miR-122, or GLDH and has potential significant utility in the early identification of DILI in trials and clinical practice.


Asunto(s)
Acetaminofén , Alanina Transaminasa , Biomarcadores , Enfermedad Hepática Inducida por Sustancias y Drogas , Estudios Cruzados , Queratina-18 , Humanos , Alanina Transaminasa/sangre , Biomarcadores/sangre , Masculino , Enfermedad Hepática Inducida por Sustancias y Drogas/sangre , Enfermedad Hepática Inducida por Sustancias y Drogas/etiología , Femenino , Método Doble Ciego , Queratina-18/sangre , Adulto , Persona de Mediana Edad , MicroARNs/sangre , Adulto Joven , Glutamato Deshidrogenasa/sangre , Analgésicos no Narcóticos
3.
Analyst ; 149(5): 1527-1536, 2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38265775

RESUMEN

Five carbapenemase enzymes, coined the 'big five', have been identified as the biggest threat to worldwide antibiotic resistance based on their broad substrate affinity and global prevalence. Here we show the development of a molecular detection method for the gene sequences from the five carbapenemases utilising the isothermal amplification method of recombinase polymerase amplification (RPA). We demonstrate the successful detection of each of the big five carbapenemase genes with femtomolar detection limits using a spatially separated multiplex amplification strategy. The approach uses tailed oligonucleotides for hybridisation, reducing the complexity and cost of the assay compared to classical RPA detection strategies. The reporter probe, horseradish peroxidase, generates the measureable output on a benchtop microplate reader, but more notably, our study leverages the power of a portable Raman spectrometer, enabling up to a 19-fold enhancement in the limit of detection. Significantly, the development approach employed a solid-phase RPA format, wherein the forward primers targeting each of the five carbapenemase genes are immobilised to a streptavidin-coated microplate. The adoption of this solid-phase methodology is pivotal for achieving a successful developmental pathway when employing this streamlined approach. The assay takes 2 hours until result, including a 40 minutes RPA amplification step at 37 °C. This is the first example of using solid-phase RPA for the detection of the big five and represents a milestone towards the developments of an automated point-of-care diagnostic for the big five using RPA.


Asunto(s)
Técnicas de Amplificación de Ácido Nucleico , Recombinasas , Recombinasas/química , Técnicas de Amplificación de Ácido Nucleico/métodos , Proteínas Bacterianas/genética , beta-Lactamasas/genética , Sensibilidad y Especificidad
4.
Analyst ; 149(2): 553-562, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38088863

RESUMEN

Hyperspectral stimulated Raman scattering (SRS) microscopy is a powerful method for direct visualisation and compositional analysis of cellular lipid droplets. Here we report the application of spectral phasor analysis as a convenient method for the segmentation of lipid droplets using the hyperspectral SRS spectrum in the high wavenumber and fingerprint region of the spectrum. Spectral phasor analysis was shown to discriminate six fatty acids based on vibrational spectroscopic features in solution. The methodology was then applied to studying fatty acid metabolism and storage in a mammalian cancer cell model and during drug-induced steatosis in a hepatocellular carcinoma cell model. The accumulation of fatty acids into cellular lipid droplets was shown to vary as a function of the degree of unsaturation, whilst in a model of drug-induced steatosis, the detection of increased saturated fatty acid esters was observed. Taking advantage of the fingerprint and high wavenumber regions of the SRS spectrum has yielded a greater insight into lipid droplet composition in a cellular context. This approach will find application in the label-free profiling of intracellular lipids in complex disease models.


Asunto(s)
Quimiometría , Gotas Lipídicas , Animales , Microscopía Óptica no Lineal , Ácidos Grasos , Microscopía/métodos , Espectrometría Raman/métodos , Mamíferos
5.
J Phys Chem C Nanomater Interfaces ; 127(50): 24475-24486, 2023 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-38148849

RESUMEN

Owing to their biocompatibility, gold nanoparticles have many applications in healthcare, notably for targeted drug delivery and the photothermal therapy of tumors. The addition of a silica shell to the nanoparticles can help to minimize the aggregation of the nanoparticles upon exposure to harsh environments and protect any Raman reporters adsorbed onto the metal surface. Here, we report the effects of the addition of a silica shell on the photothermal properties of a series of gold nanostructures, including gold nanoparticle aggregates. The presence of a Raman reporter at the surface of the gold nanoparticles also allows the structures to be evaluated by surface-enhanced Raman scattering (SERS). In this work, we explore the relationship between the degree of aggregation and the position and the extinction of the near-infrared plasmon on the observed SERS intensity and in the increase in bulk temperature upon near-infrared excitation. By tailoring the concentration of the silane and the thickness of the silica shell, it is possible to improve the photothermal heating capabilities of the structures without sacrificing the SERS intensity or changing the optical properties of the gold nanoparticle aggregates.

6.
Analyst ; 148(22): 5612-5618, 2023 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-37819248

RESUMEN

Due to their programmable structures, many aptamers can be readily split into two halves while still retaining their target binding function. While split aptamers are prevalent in the biosensor field, fundamental studies of their binding are still lacking. In this work, we took advantage of the fluorescence enhancement property of a new aptamer named OTC5 that can bind to tetracycline antibiotics to compare various split aptamers with the full-length aptamer. The split aptamers were designed to have different stem lengths. Longer stem length aptamers showed similar dissociation constants (Kd) to the full-length aptamer, while a shorter stem construct showed an 85-fold increase in Kd. Temperature-dependent fluorescence measurements confirmed the lower thermostability of split aptamers. Isothermal titration calorimetry indicated that split aptamer binding can release more heat but have an even larger entropy loss. Finally, a colorimetric biosensor using gold nanoparticles was designed by pre-assembling two thiolated aptamer halves, which can then link gold nanoparticles to give a red-to-blue color change.


Asunto(s)
Aptámeros de Nucleótidos , Nanopartículas del Metal , Oro/química , Aptámeros de Nucleótidos/química , Nanopartículas del Metal/química , Termodinámica
7.
Angew Chem Int Ed Engl ; 62(48): e202311530, 2023 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-37821742

RESUMEN

Multiplex optical detection in live cells is challenging due to overlapping signals and poor signal-to-noise associated with some chemical reporters. To address this, the application of spectral phasor analysis to stimulated Raman scattering (SRS) microscopy for unmixing three bioorthogonal Raman probes within cells is reported. Triplex detection of a metallacarborane using the B-H stretch at 2480-2650 cm-1 , together with a bis-alkyne and deuterated fatty acid can be achieved within the cell-silent region of the Raman spectrum. When coupled to imaging in the high-wavenumber region of the cellular Raman spectrum, nine discrete regions of interest can be spectrally unmixed from the hyperspectral SRS dataset, demonstrating a new capability in the toolkit of multiplexed Raman imaging of live cells.


Asunto(s)
Ácidos Grasos , Microscopía Óptica no Lineal , Microscopía Óptica no Lineal/métodos , Microscopía , Espectrometría Raman/métodos
8.
ACS Appl Mater Interfaces ; 15(39): 46181-46194, 2023 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-37733583

RESUMEN

Surface curvature can be used to focus light and alter optical processes. Here, we show that curved surfaces (spheres, cylinders, and cones) with a radius of around 5 µm lead to maximal optoplasmonic properties including surface-enhanced Raman scattering (SERS), photocatalysis, and photothermal processes. Glass microspheres, microfibers, pulled fibers, and control flat substrates were functionalized with well-dispersed and dense arrays of 45 nm Au NP using polystyrene-block-poly-4-vinylpyridine (PS-b-P4VP) and chemically modified with 4-mercaptobenzoic acid (4-MBA, SERS reporter), 4-nitrobenzenethiol (4-NBT, reactive to plasmonic catalysis), or 4-fluorophenyl isocyanide (FPIC, photothermal reporter). The various curved substrates enhanced the plasmonic properties by focusing the light in a photonic nanojet and providing a directional antenna to increase the collection efficacy of SERS photons. The optoplasmonic effects led to an increase of up to 1 order of magnitude of the SERS response, up to 5 times the photocatalytic conversion of 4-NBT to 4,4'-dimercaptoazobenzene when the diameter of the curved surfaces was about 5 µm and a small increase in photothermal effects. Taken together, the results provide evidence that curvature enhances plasmonic properties and that its effect is maximal for spherical objects around a few micrometers in diameter, in agreement with a theoretical framework based on geometrical optics. These enhanced plasmonic effects and the stationary-phase-like plasmonic substrates pave the way to the next generation of sensors, plasmonic photocatalysts, and photothermal devices.

9.
RSC Adv ; 13(32): 21850-21851, 2023 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-37475758

RESUMEN

RSC Advances is introducing the option of transparent peer review for authors. Editors-in-Chief Russell J. Cox and Karen Faulds, and Executive Editor Laura C. Fisher offer more detail on how this will work.

10.
Analyst ; 148(14): 3247-3256, 2023 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-37366648

RESUMEN

Glioblastoma multiforme (GBM) is a particularly aggressive and high-grade brain cancer, with poor prognosis and life expectancy, in urgent need of novel therapies. These severe outcomes are compounded by the difficulty in distinguishing between cancerous and non-cancerous tissues using conventional imaging techniques. Metallic nanoparticles (NPs) are advantageous due to their diverse optical and physical properties, such as their targeting and imaging potential. In this work, the uptake, distribution, and location of silica coated gold nanoparticles (AuNP-SHINs) within multicellular tumour spheroids (MTS) derived from U87-MG glioblastoma cells was investigated by surface enhanced Raman scattering (SERS) optical mapping. MTS are three-dimensional in vitro tumour mimics that represent a tumour in vivo much more closely than that of a two-dimensional cell culture. By using AuNP-SHIN nanotags, it is possible to readily functionalise the inner gold surface with a Raman reporter, and the outer silica surface with an antibody for tumour specific targeting. The nanotags were designed to target the biomarker tenascin-C overexpressed in U87-MG glioblastoma cells. Immunochemistry indicated that tenascin-C was upregulated within the core of the MTS, however limitations such as NP size, quiescence, and hypoxia, restricted the penetration of the nanotags to the core and they remained in the outer proliferating cells of the spheroids. Previous examples of MTS studies using SERS demonstrated the incubation of NPs on a 2D monolayer of cells, with the subsequent formation of the MTS from these pre-incubated cells. Here, we focus on the localisation of the NPs after incubation into pre-formed MTS to establish a better understanding of targeting and NP uptake. Therefore, this work highlights the importance for the investigation and translation of NP uptake into these 3D in vitro models.


Asunto(s)
Glioblastoma , Nanopartículas del Metal , Humanos , Espectrometría Raman/métodos , Nanopartículas del Metal/química , Tenascina , Oro/química , Esferoides Celulares , Dióxido de Silicio/química
11.
Chem Commun (Camb) ; 59(42): 6395-6398, 2023 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-37157999

RESUMEN

The synthesis of nanocarriers for the delivery of the antitumor drug cisplatin is reported. Multimodal-imaging consisting of surface enhanced Raman scattering and laser ablation inductively coupled plasma time of flight mass spectrometry was used to visualise the intracellular uptake of both the nanocarrier and drug.


Asunto(s)
Antineoplásicos , Cisplatino , Espectrometría Raman , Transporte Biológico
12.
Analyst ; 148(11): 2594-2608, 2023 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-37166147

RESUMEN

Radiation therapy is currently utilised in the treatment of approximately 50% of cancer patients. A move towards patient tailored radiation therapy would help to improve the treatment outcome for patients as the inter-patient and intra-patient heterogeneity of cancer leads to large differences in treatment responses. In radiation therapy, a typical treatment outcome is cell cycle arrest which leads to cell cycle synchronisation. As treatment is typically given over multiple fractions it is important to understand how variation in the cell cycle can affect treatment response. Raman spectroscopy has previously been assessed as a method for monitoring radiation response in cancer cells and has shown promise in detecting the subtle biochemical changes following radiation exposure. This study evaluated Raman spectroscopy as a potential tool for monitoring cellular response to radiation in synchronised versus unsynchronised UVW human glioma cells in vitro. Specifically, it was hypothesised that the UVW cells would demonstrate a greater radiation resistance if the cell cycle phase of the cells was synchronised to the G1/S boundary prior to radiation exposure. Here we evaluated whether Raman spectroscopy, combined with cell cycle analysis and DNA damage and repair analysis (γ-H2AX assay), could discriminate the subtle cellular changes associated with radiation response. Raman spectroscopy combined with principal component analysis (PCA) was able to show the changes in radiation response over 24 hours following radiation exposure. Spectral changes were assigned to variations in protein, specifically changes in protein signals from amides as well as changes in lipid expression. A different response was observed between cells synchronised in the cell cycle and unsynchronised cells. After 24 hours following irradiation, the unsynchronised cells showed greater spectral changes compared to the synchronised cells demonstrating that the cell cycle plays an important role in the radiation resistance or sensitivity of the UVW cells, and that radiation resistance could be induced by controlling the cell cycle. One of the main aims of cancer treatment is to stop the proliferation of cells by controlling or halting progression through the cell cycle, thereby highlighting the importance of controlling the cell cycle when studying the effects of cancer treatments such as radiation therapy. Raman spectroscopy has been shown to be a useful tool for evaluating the changes in radiation response when the cell cycle phase is controlled and therefore highlighting its potential for assessing radiation response and resistance.


Asunto(s)
Neoplasias Encefálicas , Espectrometría Raman , Humanos , Espectrometría Raman/métodos , Ciclo Celular/efectos de la radiación , Línea Celular Tumoral , Neoplasias Encefálicas/radioterapia
13.
Anal Chem ; 95(18): 7244-7253, 2023 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-37097612

RESUMEN

Hyperspectral stimulated Raman scattering (SRS) microscopy is a robust imaging tool for the analysis of biological systems. Here, we present a unique perspective, a label-free spatiotemporal map of mitosis, by integrating hyperspectral SRS microscopy with advanced chemometrics to assess the intrinsic biomolecular properties of an essential process of mammalian life. The application of spectral phasor analysis to multiwavelength SRS images in the high-wavenumber (HWN) region of the Raman spectrum enabled the segmentation of subcellular organelles based on innate SRS spectra. Traditional imaging of DNA is primarily reliant on using fluorescent probes or stains which can affect the biophysical properties of the cell. Here, we demonstrate the label-free visualization of nuclear dynamics during mitosis coupled with an evaluation of its spectral profile in a rapid and reproducible manner. These results provide a snapshot of the cell division cycle and chemical variability between intracellular compartments in single-cell models, which is central to understanding the molecular foundations of these fundamental biological processes. The evaluation of HWN images by phasor analysis also facilitated the differentiation between cells in separate phases of the cell cycle based solely on their nuclear SRS spectral signal, which offers an interesting label-free approach in combination with flow cytometry. Therefore, this study demonstrates that SRS microscopy combined with spectral phasor analysis is a valuable method for detailed optical fingerprinting at the subcellular level.


Asunto(s)
Mitosis , Microscopía Óptica no Lineal , Animales , Microscopía Óptica no Lineal/métodos , Microscopía , Núcleo Celular , Espectrometría Raman/métodos , Mamíferos
14.
Anal Chem ; 95(12): 5369-5376, 2023 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-36926851

RESUMEN

Carboxylesterases (CEs) are a class of enzymes that catalyze the hydrolysis of esters in a variety of endogenous and exogenous molecules. CEs play an important role in drug metabolism, in the onset and progression of disease, and can be harnessed for prodrug activation strategies. As such, the regulation of CEs is an important clinical and pharmaceutical consideration. Here, we report the first ratiometric sensor for CE activity using Raman spectroscopy based on a bisarylbutadiyne scaffold. The sensor was shown to be highly sensitive and specific for CE detection and had low cellular cytotoxicity. In hepatocyte cells, the ratiometric detection of esterase activity was possible, and the result was validated by multimodal imaging with standard viability stains used for fluorescence microscopy within the same cell population. In addition, we show that the detection of localized ultraviolet damage in a mixed cell population was possible using stimulated Raman scattering microscopy coupled with spectral phasor analysis. This sensor demonstrates the practical advantages of low molecular weight sensors that are detected using ratiometric Raman imaging and will have applications in drug discovery and biomedical research.


Asunto(s)
Esterasas , Espectrometría Raman , Espectrometría Raman/métodos , Microscopía Fluorescente
15.
Anal Chem ; 95(5): 2757-2764, 2023 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-36701560

RESUMEN

Surface-enhanced Raman scattering (SERS) is widely explored for the elucidation of underlying mechanisms behind biological processes. However, the capability of absolute quantitation of the number of nanoparticles from the SERS response remains a challenge. Here, we show for the first time the development of a new 2D quantitation model to allow calibration of the SERS response against the absolute concentration of SERS nanotags, as characterized by single particle inductively coupled plasma mass spectrometry (spICP-MS). A novel printing approach was adopted to prepare gelatin-based calibration standards containing the SERS nanotags, which consisted of gold nanoparticles and the Raman reporter 1,2-bis(4-pyridyl)ethylene. spICP-MS was used to characterize the Au mass concentration and particle number concentration of the SERS nanotags. Results from laser ablation inductively coupled plasma time-of-flight mass spectrometry imaging at a spatial resolution of 5 µm demonstrated a homogeneous distribution of the nanotags (between-line relative standard deviation < 14%) and a linear response of 197Au with increasing nanotag concentration (R2 = 0.99634) in the printed gelatin standards. The calibration standards were analyzed by SERS mapping, and different data processing approaches were evaluated. The reported calibration model was based on an "active-area" approach, classifying the pixels mapped as "active" or "inactive" and calibrating the SERS response against the total Au concentration and the particle number concentration, as characterized by spICP-MS. This novel calibration model demonstrates the potential for quantitative SERS imaging, with the capability of correlating the nanoparticle concentration to biological responses to further understand the underlying mechanisms of disease models.

16.
Nat Commun ; 14(1): 421, 2023 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-36702825

RESUMEN

Inspired by the role of intracellular liquid-liquid phase separation (LLPS) in formation of membraneless organelles, there is great interest in developing dynamic compartments formed by LLPS of intrinsically disordered proteins (IDPs) or short peptides. However, the molecular mechanisms underlying the formation of biomolecular condensates have not been fully elucidated, rendering on-demand design of synthetic condensates with tailored physico-chemical functionalities a significant challenge. To address this need, here we design a library of LLPS-promoting peptide building blocks composed of various assembly domains. We show that the LLPS propensity, dynamics, and encapsulation efficiency of compartments can be tuned by changes to the peptide composition. Specifically, with the aid of Raman and NMR spectroscopy, we show that interactions between arginine and aromatic amino acids underlie droplet formation, and that both intra- and intermolecular interactions dictate droplet dynamics. The resulting sequence-structure-function correlation could support the future development of compartments for a variety of applications.


Asunto(s)
Condensados Biomoleculares , Proteínas Intrínsecamente Desordenadas , Aminoácidos Aromáticos , Espectroscopía de Resonancia Magnética , Péptidos/análisis , Proteínas Intrínsecamente Desordenadas/metabolismo , Orgánulos/metabolismo
17.
Inorg Chem ; 62(5): 1827-1832, 2023 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-35512336

RESUMEN

The host-guest chemistry of coordination cages continues to promote significant interest, not least because confinement effects can be exploited for a range of applications, such as drug delivery, sensing, and catalysis. Often a fundamental analysis of noncovalent encapsulation is required to provide the necessary insight into the design of better functional systems. In this paper, we demonstrate the use of various techniques to probe the host-guest chemistry of a novel Pd2L4 cage, which we show is preorganized to selectively bind dicyanoarene guests with high affinity through hydrogen-bonding and other weak interactions. In addition, we exemplify the use of Raman spectroscopy as a tool for analyzing coordination cages, exploiting alkyne and nitrile reporter functional groups that are contained within the host and guest, respectively.

18.
RSC Chem Biol ; 3(12): 1403-1415, 2022 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-36544571

RESUMEN

Quantitative drug imaging in live cells is a major challenge in drug discovery and development. Many drug screening techniques are performed in solution, and therefore do not consider the impact of the complex cellular environment in their result. As such, important features of drug-cell interactions may be overlooked. In this study, Raman microscopy is used as a powerful technique for semi-quantitative imaging of Strathclyde-minor groove binders (S-MGBs) in mammalian cells under biocompatible imaging conditions. Raman imaging determined the influence of the tail group of two novel minor groove binders (S-MGB-528 and S-MGB-529) in mammalian cell models. These novel S-MGBs contained alkyne moieties which enabled analysis in the cell-silent region of the Raman spectrum. The intracellular uptake concentration, distribution and mechanism were evaluated as a function of the pK a of the tail group, morpholine and amidine, for S-MGB-528 and S-MGB-529, respectively. Although S-MGB-529 had a higher binding affinity to the minor groove of DNA in solution-phase measurements, the Raman imaging data indicated that S-MGB-528 showed a greater degree of intracellular accumulation. Furthermore, using high resolution stimulated Raman scattering (SRS) microscopy, the initial localisation of S-MGB-528 was shown to be in the nucleus before accumulation in the lysosome, which was demonstrated using a multimodal imaging approach. This study highlights the potential of Raman spectroscopy for semi-quantitative drug imaging studies and highlights the importance of imaging techniques to investigate drug-cell interactions, to better inform the drug design process.

19.
Analyst ; 147(21): 4674-4700, 2022 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-36156610

RESUMEN

Antibiotic resistant bacteria constitute a global health threat. It is essential for healthcare professionals to prescribe the correct dose of an effective antibiotic to mitigate the bacterial infection in a timely manner to improve the therapeutic outcomes to the patient and prevent the dissemination of antibiotic resistance. To achieve this, there is a need to implement a rapid and ultra-sensitive clinical diagnosis to identify resistant bacterial strains and monitor the effect of antibiotics. In this review, we highlight the use of surface enhanced Raman scattering (SERS) as a powerful diagnostic technique for bacterial detection and evaluation. Initially, this is viewed through a lens covering why SERS can surpass other traditional techniques for bacterial diagnosis. This is followed by different SERS substrates design, detection strategies that have been used for various bacterial biomarkers, how SERS can be combined with other diagnostic platforms to improve its performance towards the bacterial detection and the application of SERS for antibiotic resistance diagnosis. Finally, the recent progress in SERS detection methods in the last decade for the "Big 5" antibiotic resistant challenges as demonstrators of public health major threats is reviewed, namely: Methicillin-resistant Staphylococcus aureus (MRSA), Carbapenem-resistant Enterobacteriaceae (CRE)/Extended-spectrum beta-lactamases (ESBLs), Mycobacterium tuberculosis (TB), Vancomycin-resistant Enterococcus (VRE) and Neisseria Gonorrhoea (NG). This review provides a comprehensive view of the current state of the art with regard to using SERS for assessing antibiotic resistance with a future outlook on where the field go head in the coming years.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Humanos , Vancomicina , Antibacterianos/farmacología , Farmacorresistencia Microbiana , Bacterias , beta-Lactamasas/farmacología , Biomarcadores
20.
RSC Chem Biol ; 3(9): 1154-1164, 2022 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-36128503

RESUMEN

Stimulated Raman scattering (SRS) microscopy is a powerful technique for visualising the cellular uptake and distribution of drugs and small molecules in live cells under biocompatible imaging conditions. The use of bio-orthogonal groups within the drug molecule, including alkynes and nitriles, has enabled the direct detection of a plethora of bioactive molecules in a minimally perturbative fashion. Limited progress has been made towards real-time detection of drug uptake and distribution into live cells under physiological conditions, despite the accordant potential it presents for preclinical drug development. SRS microscopy has been applied to the study of cellular dynamics of the drug 7RH, which is a potent inhibitor of dicoidin domain receptor 1 (DDR1) and prevents cellular adhesion, proliferation and migration in vitro. The uptake of 7RH into a variety of mammalian cell models was shown to be independent of DDR1 expression. Using a perfusion chamber, the recurrent treatment of live cancer cells was achieved, enabling 7RH uptake to be visualised in real-time using SRS microscopy, after which the viability of the same cellular population was assessed using commercially available fluorescent markers in a multimodal imaging experiment. The effect of 7RH treatment in combination with the chemotherapeutic, cisplatin was investigated using sequential perfusion and time-lapse imaging in the same live cell population, to demonstrate the application of the approach. SRS microscopy also identified potent inhibition of cellular adhesion and migration in breast cancer cell models with increasing 7RH treatment concentrations, thus representing a novel read-out methodology for phenotypic assays of this kind. The direct assessment of drug-cell interactions under physiological conditions offers significant potential for the preclinical drug development process.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...