Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Acta Biomater ; 117: 322-334, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33007490

RESUMEN

Three-dimensional (3D) tissue-engineered in vitro models, particularly multicellular spheroids and organoids, have become important tools to explore disease progression and guide the development of novel therapeutic strategies. These avascular constructs are particularly powerful in oncological research due to their ability to mimic several key aspects of in vivo tumors, such as 3D structure and pathophysiologic gradients. Advancement of spheroid models requires characterization of critical features (i.e., size, shape, cellular density, and viability) during model development, and in response to treatment. However, evaluation of these characteristics longitudinally, quantitatively and non-invasively remains a challenge. Herein, Optical Coherence Tomography (OCT) is used as a label-free tool to assess 3D morphologies and cellular densities of tumor spheroids generated via the liquid overlay technique. We utilize this quantitative tool to assess Matrigel's influence on spheroid morphologic development, finding that the absence of Matrigel produces flattened, disk-like aggregates rather than 3D spheroids with physiologically-relevant features. Furthermore, this technology is adapted to quantify cell number within tumor spheroids, and to discern between live and dead cells, to non-destructively provide valuable information on tissue/construct viability, as well as a proof-of-concept for longitudinal drug efficacy studies. Together, these findings demonstrate OCT as a promising noninvasive, quantitative, label-free, longitudinal and cell-based method that can assess development and drug response in 3D cellular aggregates at a mesoscopic scale.


Asunto(s)
Esferoides Celulares , Tomografía de Coherencia Óptica , Línea Celular Tumoral , Ingeniería de Tejidos
2.
Acta Biomater ; 95: 357-370, 2019 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-30776506

RESUMEN

3D multicellular aggregates, and more advanced organotypic systems, have become central tools in recent years to study a wide variety of complex biological processes. Most notably, these model systems have become mainstream within oncology (multicellular tumor spheroids) and regenerative medicine (embryoid bodies) research. However, the biological behavior of these in vitro tissue surrogates is extremely sensitive to their aggregate size and geometry. Indeed, both of these geometrical parameters are key in producing pathophysiological gradients responsible for cellular and structural heterogeneity, replicating in vivo observations. Moreover, the fabrication techniques most widely used for producing these models lack the ability to accurately control cellular spatial location, an essential component for regulating homotypic and heterotypic cell signaling. Herein, we report on a 3D bioprinting technique, laser direct-write (LDW), that enables precise control of both spatial patterning and size of cell-encapsulating microbeads. The generated cell-laden beads are further processed into core-shelled structures, allowing for the growth and formation of self-contained, self-aggregating cells (e.g., breast cancer cells, embryonic stem cells). Within these structures we demonstrate our ability to produce multicellular tumor spheroids (MCTSs) and embryoid bodies (EBs) with well-controlled overall size and shape, that can be designed on demand. Furthermore, we investigated the impact of aggregate size on the uptake of a commonly employed ligand for receptor-mediated drug delivery, Transferrin, indicating that larger tumor spheroids exhibit greater spatial heterogeneity in ligand uptake. Taken together, these findings establish LDW as a versatile biomanufacturing platform for bioprinting and patterning core-shelled structures to generate size-controlled 3D multicellular aggregates. STATEMENT OF SIGNIFICANCE: Multicellular 3D aggregates are powerful in vitro models used to study a wide variety of complex biological processes, particularly within oncology and regenerative medicine. These tissue surrogates are fabricated using environments that encourage cellular self-assembly. However, specific applications require control of aggregate size and position to recapitulate key in vivo parameters (e.g., pathophysiological gradients and homotypic/heterotypic cell signaling). Herein, we demonstrate the ability to create and spatially pattern size-controlled embryoid bodies and tumor spheroids, using laser-based 3D bioprinting. Furthermore, we investigated the effect of tumor spheroid size on internalization of Transferrin, a common ligand for targeted therapy, finding greater spatial heterogeneity in our large aggregates. Overall, this technique offers incredible promise and flexibility for fabricating idealized 3D in vitro models.


Asunto(s)
Bioimpresión , Tamaño de la Célula , Cuerpos Embrioides/citología , Rayos Láser , Impresión Tridimensional , Esferoides Celulares/citología , Animales , Línea Celular Tumoral , Supervivencia Celular , Humanos , Procesamiento de Imagen Asistido por Computador , Ratones , Imagen Molecular , Células Madre Embrionarias de Ratones/citología , Tomografía de Coherencia Óptica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...