Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38337026

RESUMEN

Although the participation of sex hormones and sex hormone-responsive neurons in aggressive behavior has been extensively studied, the role of other systems within the hypothalamus-pituitary-gonadal (HPG) axis remains elusive. Here we assessed how the gonadotropin-releasing hormone (GnRH) and kisspeptin systems are impacted by escalated aggression in male mice. We used a combination of social isolation and aggression training (IST) to exacerbate mice's aggressive behavior. Next, low-aggressive (group-housed, GH) and highly aggressive (IST) mice were compared regarding neuronal activity in the target populations and hormonal levels, using immunohistochemistry and ELISA, respectively. Finally, we used pharmacological and viral approaches to manipulate neuropeptide signaling and expression, subsequently evaluating its effects on behavior. IST mice exhibited enhanced aggressive behavior compared to GH controls, which was accompanied by elevated neuronal activity in GnRH neurons and arcuate nucleus kisspeptin neurons. Remarkably, IST mice presented an increased number of kisspeptin neurons in the anteroventral periventricular nucleus (AVPV). In addition, IST mice exhibited elevated levels of luteinizing hormone (LH) in serum. Accordingly, activation and blockade of GnRH receptors (GnRHR) exacerbated and reduced aggression, respectively. Surprisingly, kisspeptin had intricate effects on aggression, i.e., viral ablation of AVPV-kisspeptin neurons impaired the training-induced rise in aggressive behavior whereas kisspeptin itself strongly reduced aggression in IST mice. Our results indicate that IST enhances aggressive behavior in male mice by exacerbating HPG-axis activity. Particularly, increased GnRH neuron activity and GnRHR signaling were found to underlie aggression whereas the relationship with kisspeptin remains puzzling.

2.
Development ; 149(19)2022 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-36239412

RESUMEN

The binding of 17ß-oestradiol to oestrogen receptor alpha (ERα) plays a crucial role in the control of reproduction, acting through both nuclear and membrane-initiated signalling. To study the physiological role of membrane ERα in the reproductive system, we used the C451A-ERα mouse model with selective loss of function of membrane ERα. Despite C451A-ERα mice being described as sterile, daily weighing and ultrasound imaging revealed that homozygous females do become pregnant, allowing the investigation of the role of ERα during pregnancy for the first time. All neonatal deaths of the mutant offspring mice resulted from delayed parturition associated with failure in pre-term progesterone withdrawal. Moreover, pregnant C451A-ERα females exhibited partial intrauterine embryo arrest at about E9.5. The observed embryonic lethality resulted from altered expansion of Tpbpa-positive spiral artery-associated trophoblast giant cells into the utero-placental unit, which is associated with an imbalance in expression of angiogenic factors. Together, these processes control the trophoblast-mediated spiral arterial remodelling. Hence, loss of membrane ERα within maternal tissues clearly alters the activity of invasive trophoblast cells during placentogenesis. This previously unreported function of membrane ERα could open new avenues towards a better understanding of human pregnancy-associated pathologies.


Asunto(s)
Receptor alfa de Estrógeno , Trofoblastos , Animales , Estradiol/metabolismo , Receptor alfa de Estrógeno/genética , Femenino , Fertilidad , Humanos , Ratones , Placenta/metabolismo , Embarazo , Progesterona/metabolismo , Receptores de Estrógenos/metabolismo , Trofoblastos/metabolismo
3.
Ann Intensive Care ; 12(1): 59, 2022 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-35779125

RESUMEN

In our recent survey, we aimed to collect information on perceived inequity as well as professional and personal fulfillment among women intensivists in France. For the 371 respondents out of the 732 persons who received the survey, the findings were unequivocal: for one-third of the respondents, being a woman was considered as an obstacle to careers or academic advancement, and for two thirds, pregnancy was viewed as a barrier to their career advancement. Gender discrimination had been experienced by 55% of the respondents. In 2019, to promote and achieve gender equity in the French Intensive Care Society (FICS), ten actions were initiated and are detailed in the present manuscript together with supporting data: (1) creation of a working group: the FEMMIR group; (2) promotion of mentorship; (3) implementation of concrete sponsorship; (4) transparency and public reporting of gender ratios in editorial boards; (5) workshops dedicated to unconscious gender bias; (6) workshops dedicated to improved women assertiveness; (7) role models; (8) creation of educational/information programs for young intensivists; (9) development of research on gender inequity and, as a perspective; and (10) development of a wide-ranging program. This review is aimed at providing a toolbox of organizational best practices designed to achieve gender equity. It is particularly important to share promising practical action engaged in our FEMMIR group with other concerned professionals around the world.

4.
Front Endocrinol (Lausanne) ; 12: 750145, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34745014

RESUMEN

Metformin is a drug used for the treatment of type 2 diabetes and disorders associated with insulin resistance. Metformin is also used in the treatment of pregnancy disorders such as gestational diabetes. However, the consequences of foetal exposure to metformin on the fertility of exposed offspring remain poorly documented. In this study, we investigated the effect of in utero metformin exposure on the fertility of female and male offspring. We observed that metformin is detectable in the blood of the mother and in amniotic fluid and blood of the umbilical cord. Metformin was not measurable in any tissues of the embryo, including the gonads. The effect of metformin exposure on offspring was sex specific. The adult females that had been exposed to metformin in utero presented no clear reduction in fertility. However, the adult males that had been exposed to metformin during foetal life exhibited a 30% reduction in litter size compared with controls. The lower fertility was not due to a change in sperm production or the motility of sperm. Rather, the phenotype was due to lower sperm head quality - significantly increased spermatozoa head abnormality with greater DNA damage - and hypermethylation of the genomic DNA in the spermatozoa associated with lower expression of the ten-eleven translocation methylcytosine dioxygenase 1 (TET1) protein. In conclusion, while foetal metformin exposure did not dramatically alter gonad development, these results suggest that metabolic modification by metformin during the foetal period could change the expression of epigenetic regulators such as Tet1 and perturb the genomic DNA in germ cells, changes that might contribute to a reduced fertility.


Asunto(s)
Hipoglucemiantes/administración & dosificación , Infertilidad Masculina/inducido químicamente , Metformina/efectos adversos , Efectos Tardíos de la Exposición Prenatal/inducido químicamente , Animales , Daño del ADN , Metilación de ADN/efectos de los fármacos , Proteínas de Unión al ADN/genética , Femenino , Hipoglucemiantes/farmacocinética , Masculino , Metformina/farmacocinética , Ratones , Ratones Endogámicos C57BL , Embarazo , Proteínas Proto-Oncogénicas/genética , Recuento de Espermatozoides , Cabeza del Espermatozoide/efectos de los fármacos , Motilidad Espermática/efectos de los fármacos , Espermatozoides/efectos de los fármacos , Distribución Tisular
5.
Artículo en Inglés | MEDLINE | ID: mdl-30524372

RESUMEN

Initially produced in Europe in 1958, metformin is still one of the most widely prescribed drugs to treat type II diabetes and other comorbidities associated with insulin resistance. Metformin has been shown to improve fertility outcomes in females with insulin resistance associated with polycystic ovary syndrome (PCOS) and in obese males with reduced fertility. Metformin treatment reinstates menstrual cyclicity, decreases the incidence of cesareans, and limits the number of premature births. Notably, metformin reduces steroid levels in conditions associated with hyperandrogenism (e.g., PCOS and precocious puberty) in females and improves fertility of adult men with metabolic syndrome through increased testosterone production. While the therapeutical use of metformin is considered to be safe, in the last 10 years some epidemiological studies have described phenotypic differences after prenatal exposure to metformin. The goals of this review are to briefly summarize the current knowledge on metformin focusing on its effects on the female and male reproductive organs, safety concerns, including the potential for modulating fetal imprinting via epigenetics.

6.
Poult Sci ; 96(7): 2459-2470, 2017 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-28339706

RESUMEN

Decades of genetic selection have generated 2 different, highly specialized types of chickens in which 1 type, known as the layer-type chicken, expresses high laying performance while the other type, known as the broiler-type chicken, is dedicated to the production of fast-growing birds. Selected lines for the latter type often express disorders in their reproductive performance including early sexual maturation and accelerated, non-reversible seasonal decline of their semen production and mating behavior. The aim of the present study was to characterize some metabolic markers of the Sertoli cell populations. Sertoli cells are somatic cells known to support, coordinate, nourish, and protect the germ cell populations from onset to the end of their meiotic process. Comparisons of gonadal development between males of the 2 genetic types taken at their pre-pubertal period indicated that the testes of layer-type chickens are significantly less developed than in broiler-type males taken at the same age. In addition, cultures of purified Sertoli cells from the 2 types revealed in vitro a higher proliferative capacity when issued from layer compared to broiler-type chickens. This was associated with a higher expression of the genes involved in the beta-oxidation of fatty acids (CPT1; PPARß) as well as a 4-fold increase in the Lactate Dehydrogenase-A expression and activity. In contrast, Sertoli cells from broiler-type chickens presented an elevated activity of citrate synthase and mitochondria, suggesting a better efficacy of aerobic metabolism in Sertoli cells from broiler compared to layer-type chickens. Moreover, the testis from broiler-type chickens seems to be more sensitive to oxidative stress due to the lower global antioxidant capacity compared to layer-type chickens.In conclusion, these results suggest that the metabolic activity of testicular tissues is different in the layer and broiler breeder chickens. The aerobic metabolism more prevalent in broiler-type chickens could be a factor to reduce the male fertility such as germ cell quality.


Asunto(s)
Proliferación Celular , Pollos/fisiología , Células de Sertoli/fisiología , Testículo/crecimiento & desarrollo , Animales , Pollos/genética , Pollos/crecimiento & desarrollo , Masculino , Selección Genética
7.
Mol Cell Endocrinol ; 423: 96-112, 2016 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-26772142

RESUMEN

The AMP-activated protein kinase (AMPK) is an important regulator of cellular energy homeostasis which plays a role in fertility. Complete disruption of the AMPK catalytic subunit α1 gene (α1AMPK KO) in male mice results in a decrease in litter size which is associated with the production of altered sperm morphology and motility. Because of the importance of Sertoli cells in the formation of germ cells, we have chosen to selectively disrupt α1AMPK only in the Sertoli cells in mice (Sc-α1AMPK-KO mice). Specific deletion of the α1AMPK gene in Sertoli cells resulted in a 25% reduction in male fertility associated with abnormal spermatozoa with a thin head. No clear alterations in testis morphology or modification in the number of Sertoli cells in vivo were observed, but a dysregulation in energy metabolism in Sertoli cells occurred. We have reported an increase in lactate production, in lipid droplets, and a reduction in ATP production in Sc-α1AMPK-KO Sertoli cells. These perturbations were associated with lower expression of mitochondrial markers (cytochrome c and PGC1-α). In addition another metabolic sensor, the deacetylase SIRT1, had a reduction in expression which is correlated with a decline in deacetylase activity. Finally, expression and localization of junctions forming the blood-testis barrier between Sertoli cells themselves and with germ cells were deregulated in Sc-α1AMPK-KO. In conclusion, these results suggest that dysregulation of the energy sensing machinery exclusively through disruption of α1AMPK in Sertoli cells translates to a reduction in the quality of germ cells and fertility.


Asunto(s)
Proteínas Quinasas Activadas por AMP/genética , Acrosoma/enzimología , Células de Sertoli/enzimología , Proteínas Quinasas Activadas por AMP/metabolismo , Adenosina Trifosfato/biosíntesis , Animales , Proliferación Celular , Supervivencia Celular , Células Cultivadas , Femenino , Expresión Génica , Infertilidad Masculina/enzimología , Infertilidad Masculina/genética , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Transporte de Proteínas , Sirtuina 1/genética , Sirtuina 1/metabolismo , Motilidad Espermática
8.
Front Neurosci ; 9: 235, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26236179

RESUMEN

From C. elegans to mammals (including humans), nutrition and energy metabolism significantly influence reproduction. At the cellular level, some detectors of energy status indicate whether energy reserves are abundant (obesity), or poor (diet restriction). One of these detectors is AMPK (5' AMP-activated protein kinase), a protein kinase activated by ATP deficiency but also by several natural substances such as polyphenols or synthetic molecules like metformin, used in the treatment of insulin resistance. AMPK is expressed in muscle and liver, but also in the ovary and testis. This review focuses on the main effects of AMPK identified in gonadal cells. We describe the role of AMPK in gonadal steroidogenesis, in proliferation and survival of somatic gonadal cells and in the maturation of oocytes or spermatozoa. We discuss also the role of AMPK in germ and somatic cell interactions within the cumulus-oocyte complex and in the blood testis barrier. Finally, the interface in the gonad between AMPK and modification of metabolism is reported and discussion about the role of AMPK on fertility, in regards to the treatment of infertility associated with insulin resistance (male obesity, polycystic ovary syndrome).

9.
PLoS One ; 10(3): e0119680, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25767884

RESUMEN

Oogenesis and folliculogenesis are dynamic processes that are regulated by endocrine, paracrine and autocrine signals. These signals are exchanged between the oocyte and the somatic cells of the follicle. Here we analyzed the role of AMP-activated protein kinase (AMPK), an important regulator of cellular energy homeostasis, by using transgenic mice deficient in α1AMPK specifically in the oocyte. We found a decrease of 27% in litter size was observed in ZP3-α1AMPK-/- (ZP3-KO) female mice. Following in vitro fertilization, where conditions are stressful for the oocyte and embryo, ZP3-KO oocytes were 68% less likely to pass the 2-cell stage. In vivo and in cumulus-oocyte complexes, several proteins involved in junctional communication, such as connexin37 and N-cadherin were down-regulated in the absence of α1AMPK. While the two signalling pathways (PKA and MAPK) involved in the junctional communication between the cumulus/granulosa cells and the oocyte were stimulated in control oocytes, ZP3-KO oocytes exhibited only low phosphorylation of MAPK or CREB proteins. In addition, MII oocytes deficient in α1AMPK had a 3-fold lower ATP concentration, an increase in abnormal mitochondria, and a decrease in cytochrome C and PGC1α levels, suggesting perturbed energy production by mitochondria. The absence of α1AMPK also induced a reduction in histone deacetylase activity, which was associated with an increase in histone H3 acetylation (K9/K14 residues). Together, the results of the present study suggest that absence of AMPK, modifies oocyte quality through energy processes and oocyte/somatic cell communication. The limited effect observed in vivo could be partly due to a favourable follicle microenvironment where nutrients, growth factors, and adequate cell interaction were present. Whereas in a challenging environment such as that of in vitro culture following IVF, the phenotype is revealed.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Uniones Comunicantes/metabolismo , Mitocondrias/metabolismo , Mitocondrias/fisiología , Oocitos/metabolismo , Animales , Cadherinas/metabolismo , Comunicación Celular/fisiología , Conexinas/metabolismo , Metabolismo Energético/fisiología , Femenino , Células de la Granulosa/metabolismo , Células de la Granulosa/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Oocitos/fisiología , Oogénesis/fisiología , Folículo Ovárico/metabolismo , Fosforilación/fisiología , Transducción de Señal/fisiología , Proteína alfa-4 de Unión Comunicante
10.
Ann Transl Med ; 2(6): 55, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25333030

RESUMEN

Metformin is an oral anti-hyperglycemic drug that acts as an insulin sensitizer in the treatment of diabetes mellitus type 2. It has also been widely used in the treatment of polycystic ovary syndrome (PCOS) and gestational diabetes. This drug has been shown to activate a protein kinase called 5' AMP-activated protein kinase or AMPK. AMPK is present in many tissues making metformin's effect multi factorial. However as metformin crosses the placenta, its use during pregnancy raises concerns regarding potential adverse effects on the mother and fetus. The majority of reports suggest no significant adverse effects or teratogenicity. However, disconcerting reports of male mouse offspring that were exposed to metformin in utero that present with a reduction in testis size, seminiferous tubule size and in Sertoli cell number suggest that we do not understand the full suite of effects of metformin. In addition, recent molecular evidence is suggesting an epigenetic effect of metformin which could explain some of the long-term effects reported. Nevertheless, the data are still insufficient to completely confirm or disprove negative effects of metformin. The aims of this review are to provide a summary of the safety of metformin in various aspects of sexual reproduction, the use of metformin by gestating mothers, and its possible side-effects on offspring from women who are administered metformin during pregnancy.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...