Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
iScience ; 24(7): 102731, 2021 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-34235414

RESUMEN

[This corrects the article DOI: 10.1016/j.isci.2020.101800.].

2.
Bioconjug Chem ; 32(5): 879-890, 2021 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-33861574

RESUMEN

Structural characterization of macromolecular assemblies is often limited by the transient nature of the interactions. The development of specific chemical tools to covalently tether interacting proteins to each other has played a major role in various fundamental discoveries in recent years. To this end, protein engineering techniques such as mutagenesis, incorporation of unnatural amino acids, and methods using synthetic substrate/cosubstrate derivatives were employed. In this review, we give an overview of both commonly used and recently developed biochemical methodologies for covalent stabilization of macromolecular complexes enabling structural investigation via crystallography, nuclear magnetic resonance, and cryo-electron microscopy. We divided the strategies into nonenzymatic- and enzymatic-driven cross-linking and further categorized them in either naturally occurring or engineered covalent linkage. This review offers a compilation of recent advances in diverse scientific fields where the structural characterization of macromolecular complexes was achieved by the aid of intermolecular covalent linkage.


Asunto(s)
Biología , Sustancias Macromoleculares/química , Sustancias Macromoleculares/metabolismo
3.
Nat Commun ; 12(1): 2426, 2021 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-33893288

RESUMEN

To adapt to fluctuating protein folding loads in the endoplasmic reticulum (ER), the Hsp70 chaperone BiP is reversibly modified with adenosine monophosphate (AMP) by the ER-resident Fic-enzyme FICD/HYPE. The structural basis for BiP binding and AMPylation by FICD has remained elusive due to the transient nature of the enzyme-substrate-complex. Here, we use thiol-reactive derivatives of the cosubstrate adenosine triphosphate (ATP) to covalently stabilize the transient FICD:BiP complex and determine its crystal structure. The complex reveals that the TPR-motifs of FICD bind specifically to the conserved hydrophobic linker of BiP and thus mediate specificity for the domain-docked conformation of BiP. Furthermore, we show that both AMPylation and deAMPylation of BiP are not directly regulated by the presence of unfolded proteins. Together, combining chemical biology, crystallography and biochemistry, our study provides structural insights into a key regulatory mechanism that safeguards ER homeostasis.


Asunto(s)
Proteínas de Choque Térmico/metabolismo , Proteínas de la Membrana/metabolismo , Nucleotidiltransferasas/metabolismo , Procesamiento Proteico-Postraduccional , Repeticiones de Tetratricopéptidos , Adenosina Monofosfato/metabolismo , Adenosina Trifosfato/metabolismo , Secuencia de Aminoácidos , Retículo Endoplásmico/metabolismo , Chaperón BiP del Retículo Endoplásmico , Células HEK293 , Proteínas de Choque Térmico/química , Homeostasis , Humanos , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Simulación de Dinámica Molecular , Nucleotidiltransferasas/química , Nucleotidiltransferasas/genética , Unión Proteica , Conformación Proteica , Especificidad por Sustrato
4.
iScience ; 23(12): 101800, 2020 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-33299971

RESUMEN

AMPylation is a post-translational modification that modifies amino acid side chains with adenosine monophosphate (AMP). Recently, a role of AMPylation as a universal regulatory mechanism in infection and cellular homeostasis has emerged, driving the demand for universal tools to study this modification. Here, we describe three monoclonal anti-AMP antibodies (mAbs) from mouse that are capable of protein backbone-independent recognition of AMPylation, in denatured (western blot) as well as native (ELISA, IP) applications, thereby outperforming previously reported tools. These antibodies are highly sensitive and specific for AMP modifications, highlighting their potential as tools for new target identification, as well as for validation of known targets. Interestingly, applying the anti-AMP mAbs to various cancer cell lines reveals a previously undescribed broad and diverse AMPylation pattern. In conclusion, these anti-AMP mABs will further advance the current understanding of AMPylation and the spectrum of modified targets.

5.
Bioconjug Chem ; 31(8): 1883-1892, 2020 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-32628462

RESUMEN

Protein immobilization has gained high interest in recent years for its valuable applications in life sciences involving drug delivery and protein arrays. Herein, we combine sortase-mediated protein immobilization with the versatility of magnetic nanoparticles and a sensitive GFP-based quantification system. Using this method, we successfully immobilized and quantified the amount of coupled enzymes by fluorescence spectroscopy and assessed their activity by kinetic measurements. We show that sortase-mediated coupling of enzymes enables preparation of biological samples with a high demand of purity as demonstrated by single-molecule FRET. Here, we report that sortase-mediated protein ligation allows both N- and C-terminal site-specific protein immobilization. Additionally, we demonstrate that sortase-mediated protein immobilization is suitable for direct protein immobilization from complex lysates. Direct immobilization from lysate allows study of enzyme functionality without the need of time-consuming enzyme purification, while magnetic nanoparticles permit easy addition and removal of coupled enzymes to and from a reaction mixture.


Asunto(s)
Aminoaciltransferasas/metabolismo , Proteínas Bacterianas/metabolismo , Cisteína Endopeptidasas/metabolismo , Enzimas Inmovilizadas/química , Hierro/química , Fenómenos Magnéticos , Nanopartículas del Metal/química , Aminoaciltransferasas/química , Proteínas Bacterianas/química , Cisteína Endopeptidasas/química , Enzimas Inmovilizadas/metabolismo , Escherichia coli/metabolismo , Transferencia Resonante de Energía de Fluorescencia , Regulación de la Expresión Génica
6.
Nat Chem ; 12(8): 732-739, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32632184

RESUMEN

Various pathogenic bacteria use post-translational modifications to manipulate the central components of host cell functions. Many of the enzymes released by these bacteria belong to the large Fic family, which modify targets with nucleotide monophosphates. The lack of a generic method for identifying the cellular targets of Fic family enzymes hinders investigation of their role and the effect of the post-translational modification. Here, we establish an approach that uses reactive co-substrate-linked enzymes for proteome profiling. We combine synthetic thiol-reactive nucleotide derivatives with recombinantly produced Fic enzymes containing strategically placed cysteines in their active sites to yield reactive binary probes for covalent substrate capture. The binary complexes capture their targets from cell lysates and permit subsequent identification. Furthermore, we determined the structures of low-affinity ternary enzyme-nucleotide-substrate complexes by applying a covalent-linking strategy. This approach thus allows target identification of the Fic enzymes from both bacteria and eukarya.


Asunto(s)
Proteínas Bacterianas/metabolismo , Proteínas de la Membrana/metabolismo , Nucleotidiltransferasas/metabolismo , Adenosina Monofosfato/metabolismo , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Bartonella/metabolismo , Biocatálisis , Cristalografía por Rayos X , Células HeLa , Humanos , Proteínas de la Membrana/química , Nucleotidiltransferasas/química , Pasteurellaceae/metabolismo , Procesamiento Proteico-Postraduccional , Estructura Terciaria de Proteína , Alineación de Secuencia , Especificidad por Sustrato , Proteína de Unión al GTP cdc42/genética , Proteína de Unión al GTP cdc42/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA