Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Adv ; 8(46): eadd0610, 2022 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-36399556

RESUMEN

The global carbon cycle is strongly modulated by organic carbon (OC) sequestration and decomposition. Whereas OC sequestration is relatively well constrained, there are few quantitative estimates of its susceptibility to decomposition. Fjords are hot spots of sedimentation and OC sequestration in marine sediments. Here, we adopt fjords as model systems to investigate the reactivity of sedimentary OC by assessing the distribution of the activation energy required to break OC bonds. Our results reveal that OC in fjord sediments is more thermally labile than that in global sediments, which is governed by its unique provenance and organo-mineral interactions. We estimate that 61 ± 16% of the sedimentary OC in fjords is degradable. Once this OC is remobilized and remineralized during glacial maxima, the resulting metabolic CO2 could counterbalance up to 50 ppm of the atmospheric CO2 decrease during glacial times, making fjords critical actors in dampening glacial-interglacial climate fluctuations through negative carbon cycling loops.

2.
Ambio ; 51(2): 370-382, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34628602

RESUMEN

Unprecedented and dramatic transformations are occurring in the Arctic in response to climate change, but academic, public, and political discourse has disproportionately focussed on the most visible and direct aspects of change, including sea ice melt, permafrost thaw, the fate of charismatic megafauna, and the expansion of fisheries. Such narratives disregard the importance of less visible and indirect processes and, in particular, miss the substantive contribution of the shelf seafloor in regulating nutrients and sequestering carbon. Here, we summarise the biogeochemical functioning of the Arctic shelf seafloor before considering how climate change and regional adjustments to human activities may alter its biogeochemical and ecological dynamics, including ecosystem function, carbon burial, or nutrient recycling. We highlight the importance of the Arctic benthic system in mitigating climatic and anthropogenic change and, with a focus on the Barents Sea, offer some observations and our perspectives on future management and policy.


Asunto(s)
Ecosistema , Sedimentos Geológicos , Regiones Árticas , Cambio Climático , Cubierta de Hielo
3.
Nat Commun ; 12(1): 275, 2021 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-33436568

RESUMEN

Burial of organic material in marine sediments represents a dominant natural mechanism of long-term carbon sequestration globally, but critical aspects of this carbon sink remain unresolved. Investigation of surface sediments led to the proposition that on average 10-20% of sedimentary organic carbon is stabilised and physically protected against microbial degradation through binding to reactive metal (e.g. iron and manganese) oxides. Here we examine the long-term efficiency of this rusty carbon sink by analysing the chemical composition of sediments and pore waters from four locations in the Barents Sea. Our findings show that the carbon-iron coupling persists below the uppermost, oxygenated sediment layer over thousands of years. We further propose that authigenic coprecipitation is not the dominant factor of the carbon-iron bounding in these Arctic shelf sediments and that a substantial fraction of the organic carbon is already bound to reactive iron prior deposition on the seafloor.

4.
Philos Trans A Math Phys Eng Sci ; 378(2181): 20190359, 2020 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-32862804

RESUMEN

The Barents Sea is experiencing long-term climate-driven changes, e.g. modification in oceanographic conditions and extensive sea ice loss, which can lead to large, yet unquantified disruptions to ecosystem functioning. This key region hosts a large fraction of Arctic primary productivity. However, processes governing benthic and pelagic coupling are not mechanistically understood, limiting our ability to predict the impacts of future perturbations. We combine field observations with a reaction-transport model approach to quantify organic matter (OM) processing and disentangle its drivers. Sedimentary OM reactivity patterns show no gradients relative to sea ice extent, being mostly driven by seafloor spatial heterogeneity. Burial of high reactivity, marine-derived OM is evident at sites influenced by Atlantic Water (AW), whereas low reactivity material is linked to terrestrial inputs on the central shelf. Degradation rates are mainly driven by aerobic respiration (40-75%), being greater at sites where highly reactive material is buried. Similarly, ammonium and phosphate fluxes are greater at those sites. The present-day AW-dominated shelf might represent the future scenario for the entire Barents Sea. Our results represent a baseline systematic understanding of seafloor geochemistry, allowing us to anticipate changes that could be imposed on the pan-Arctic in the future if climate-driven perturbations persist. This article is part of the theme issue 'The changing Arctic Ocean: consequences for biological communities, biogeochemical processes and ecosystem functioning'.


Asunto(s)
Cambio Climático , Ecosistema , Organismos Acuáticos/metabolismo , Regiones Árticas , Simulación por Computador , Sedimentos Geológicos/química , Cubierta de Hielo , Modelos Biológicos , Compuestos Orgánicos/metabolismo , Agua de Mar/química
5.
Philos Trans A Math Phys Eng Sci ; 378(2181): 20190364, 2020 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-32862811

RESUMEN

Over the last few decades, the Barents Sea experienced substantial warming, an expansion of relatively warm Atlantic water and a reduction in sea ice cover. This environmental change forces the entire Barents Sea ecosystem to adapt and restructure and therefore changes in pelagic-benthic coupling, organic matter sedimentation and long-term carbon sequestration are expected. Here we combine new and existing organic and inorganic geochemical surface sediment data from the western Barents Sea and show a clear link between the modern ecosystem structure, sea ice cover and the organic carbon and CaCO3 contents in Barents Sea surface sediments. Furthermore, we discuss the sources of total and reactive iron phases and evaluate the spatial distribution of organic carbon bound to reactive iron. Consistent with a recent global estimate we find that on average 21.0 ± 8.3 per cent of the total organic carbon is associated to reactive iron (fOC-FeR) in Barents Sea surface sediments. The spatial distribution of fOC-FeR, however, seems to be unrelated to sea ice cover, Atlantic water inflow or proximity to land. Future Arctic warming might, therefore, neither increase nor decrease the burial rates of iron-associated organic carbon. However, our results also imply that ongoing sea ice reduction and the associated alteration of vertical carbon fluxes might cause accompanied shifts in the Barents Sea surface sedimentary organic carbon content, which might result in overall reduced carbon sequestration in the future. This article is part of the theme issue 'The changing Arctic Ocean: consequences for biological communities, biogeochemical processes and ecosystem functioning'.


Asunto(s)
Sedimentos Geológicos/química , Cubierta de Hielo/química , Regiones Árticas , Carbonato de Calcio/análisis , Carbono/análisis , Ciclo del Carbono , Ecosistema , Calentamiento Global , Hierro/análisis , Noruega , Océanos y Mares , Compuestos Orgánicos/análisis
6.
Philos Trans A Math Phys Eng Sci ; 378(2181): 20200223, 2020 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-32862813

RESUMEN

Process-based, mechanistic investigations of organic matter transformation and diagenesis directly beneath the sediment-water interface (SWI) in Arctic continental shelves are vital as these regions are at greatest risk of future change. This is in part due to disruptions in benthic-pelagic coupling associated with ocean current change and sea ice retreat. Here, we focus on a high-resolution, multi-disciplinary set of measurements that illustrate how microbial processes involved in the degradation of organic matter are directly coupled with inorganic and organic geochemical sediment properties (measured and modelled) as well as the extent/depth of bioturbation. We find direct links between aerobic processes, reactive organic carbon and highest abundances of bacteria and archaea in the uppermost layer (0-4.5 cm depth) followed by dominance of microbes involved in nitrate/nitrite and iron/manganese reduction across the oxic-anoxic redox boundary (approx. 4.5-10.5 cm depth). Sulfate reducers dominate in the deeper (approx. 10.5-33 cm) anoxic sediments which is consistent with the modelled reactive transport framework. Importantly, organic matter reactivity as tracked by organic geochemical parameters (n-alkanes, n-alkanoic acids, n-alkanols and sterols) changes most dramatically at and directly below the SWI together with sedimentology and biological activity but remained relatively unchanged across deeper changes in sedimentology. This article is part of the theme issue 'The changing Arctic Ocean: consequences for biological communities, biogeochemical processes and ecosystem functioning'.


Asunto(s)
Ecosistema , Sedimentos Geológicos/química , Sedimentos Geológicos/microbiología , Compuestos Orgánicos/análisis , Agua de Mar/química , Agua de Mar/microbiología , Regiones Árticas , Biotransformación , Ciclo del Carbono , Cambio Climático , Bases de Datos Factuales , Fenómenos Microbiológicos , Noruega , Océanos y Mares , Oxidación-Reducción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...