Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Nutr ; 10: 912824, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36866052

RESUMEN

Introduction: Impact of processing on product characteristics, sustainability, traceability, authenticity, and public health along the food chain becomes more and more important not only to the producer but also to the customer and the trust of a consumer toward a brand. In recent years, the number of juices and smoothies containing so called super foods or fruits, which have been "gently pasteurized," has increased significantly. However, the term "gentle pasteurization" related to the application of emerging preservation technologies such as pulsed electric fields (PEF), high pressure processing (HPP) or ohmic heating (OH) is not clearly defined. Methods: Therefore, the presented study investigated the influence of PEF, HPP, OH, and thermal treatment on quality characteristics and microbial safety of sea buckthorn syrup. Syrups from two different varieties were investigated under the following conditions HPP (600 MPa 4-8 min), OH (83°C and 90°C), PEF (29.5 kV/cm, 6 µs, 100 Hz), and thermal (88°C, hot filling). Analyses to test the influence on quality parameters like ascorbic acid (AA), flavonoids, carotenoids, tocopherols, antioxidant activity; metabolomical/chemical profiling (fingerprinting) via U-HPLC-HRMS/MS (here especially flavonoids and fatty acids); sensory evaluation, as well as microbial stability including storage, were conducted. Results and discussion: Independent from the treatment, the samples were stable over 8 weeks of storage at 4°C. The influence on the nutrient content [Ascorbic acid (AA), total antioxidant activity (TAA), total phenolic compounds (TPC), tocopherols (Vit E)] was similar for all tested technologies. Employing statistical evaluation Principal Component Analysis (PCA) a clear clustering based on the processing technologies was observed. Flavonoids as well as fatty acids were significantly impacted by the type of used preservation technology. This was obvious during the storage time of PEF and HPP syrups, where enzyme activity was still active. The color as well as taste of the syrups were found to be more fresh-like for the HPP treated samples.

2.
J Phys Condens Matter ; 34(4)2021 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-34670197

RESUMEN

Epitaxial MgO films on Ag(100) were studied by photoelectron spectroscopy. From the low-energy part of the spectra we obtain a negative electron affinity of about -0.9 eV. Even though electrons in the lowest conduction band are not confined by a potential barrier at the surface, quantum-well resonances are observed. The dispersion of the conduction band is determined in good agreement with theoretical calculations. Aspects of observing image-potential states predicted by theory on MgO films are discussed.

3.
J Phys Condens Matter ; 33(13)2021 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-33412528

RESUMEN

Photoelectron spectroscopy is used to show that thick adamantane films on Cu(111) have a negative electron affinity of -0.3 ± 0.1 eV. The ionization potential is obtained as 8.55 ± 0.15 eV resulting in a band gap of 8.9 ± 0.1 eV. For films of about 1.4 monolayer thickness the electron affinity is close to zero and the valence bands are shifted toward the Fermi energy due to charge transfer from Cu 3d bands.

4.
Phys Rev Lett ; 124(17): 176401, 2020 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-32412286

RESUMEN

The Rashba effect is fundamental to the physics of two-dimensional electron systems and underlies a variety of spintronic phenomena. It has been proposed that the formation of Rashba-type spin splittings originates microscopically from the existence of orbital angular momentum (OAM) in the Bloch wave functions. Here, we present detailed experimental evidence for this OAM-based origin of the Rashba effect by angle-resolved photoemission (ARPES) and two-photon photoemission experiments for a monolayer AgTe on Ag(111). Using quantitative low-energy electron diffraction analysis, we determine the structural parameters and the stacking of the honeycomb overlayer with picometer precision. Based on an orbital-symmetry analysis in ARPES and supported by first-principles calculations, we unequivocally relate the presence and absence of Rashba-type spin splittings in different bands of AgTe to the existence of OAM.

5.
Nano Lett ; 20(5): 3090-3097, 2020 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-32283026

RESUMEN

Despite the intense research on photovoltaic lead halide perovskites, reported optical properties as basic as the absorption onset and the optical band gap vary significantly. To unambiguously answer the question whether the discrepancies are a result of differences between bulk and "near-surface" material, we perform two nonlinear spectroscopies with drastically different information depths on single crystals of the prototypical (CH3NH3)PbI3 methylammonium lead iodide. Two-photon absorption, detected via the resulting generation of carriers and photocurrents (2PI-PC), probes the interband transitions with an information depth in the millimeter range relevant for bulk (single-crystal) material. In contrast, the transient magneto-optical Kerr effect (trMOKE) measured in a reflection geometry determines the excitonic transition energies in the region near (hundreds of nm) the surface which also determine the optical properties in typical thin films. To identify differences between structural phases, we sweep the sample temperature across the orthorhombic-tetragonal phase transition temperature. In the application-relevant room-temperature tetragonal phase (at 170 K), we find a bulk band gap of 1.55 ± 0.01 eV, whereas in the near-surface region excitonic transitions occur at 1.59 ± 0.01 eV. The latter value is consistent with previous reflectance measurements by other groups and considerably higher than the bulk band gap. The small band gap of the bulk material explains the extended infrared absorption of crystalline perovskite solar cells, the low-energy bands which carry optically driven spin-polarized currents, and the narrow bandwidth of crystalline perovskite photodetectors making use of the spectral filtering at the surface.

6.
Foods ; 8(7)2019 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-31288407

RESUMEN

The objective of this work was to optimize pulsed electric field (PEF) or ohmic heating (OH) application for carrot and apple mashes treatment at different preheating temperatures (40, 60 or 80 °C). The effect of tissue disintegration on the properties of recovered juices was quantified, taking into account the colour change, the antioxidant activity and the enzyme activity of peroxidase (POD) in both carrot and apple juice and polyphenol oxidase (PPO) in apple juice. Lower ΔE and an increase of the antioxidant activity were obtained for juice samples treated with temperature at 80 °C with or without PEF and OH pretreatment compared with those of untreated samples. The inactivation by 90% for POD and PPO was achieved when a temperature of 80 °C was applied for both carrot and apple mash. A better retention of plant secondary metabolites from carrot and apple mashes could be achieved by additional PEF or OH application. Obtained results are the basis for the development of targeted processing concepts considering the release, inactivation and retention of ingredients.

7.
Proc Natl Acad Sci U S A ; 115(38): 9509-9514, 2018 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-30181293

RESUMEN

Lead halide perovskites are used in thin-film solar cells, which owe their high efficiency to the long lifetimes of photocarriers. Various calculations find that a dynamical Rashba effect could significantly contribute to these long lifetimes. This effect is predicted to cause a spin splitting of the electronic bands of inversion-symmetric crystalline materials at finite temperatures, resulting in a slightly indirect band gap. Direct experimental evidence of the existence or the strength of the spin splitting is lacking. Here, we resonantly excite photocurrents in single crystalline ([Formula: see text])[Formula: see text] with circularly polarized light to clarify the existence of spin splittings in the band structure. We observe a circular photogalvanic effect, i.e., the photocurrent depends on the light helicity, in both orthorhombic and tetragonal ([Formula: see text])[Formula: see text] At room temperature, the effect peaks for excitation photon energies [Formula: see text] meV below the direct optical band gap. Temperature-dependent measurements reveal a sign change of the effect at the orthorhombic-tetragonal phase transition, indicating different microscopic origins in the two phases. Within the tetragonal phase, both [Formula: see text] and the amplitude of the circular photogalvanic effect increase with temperature. Our findings support a dynamical Rashba effect in this phase, i.e., a spin splitting caused by thermally induced structural fluctuations which break inversion symmetry.

8.
J Chem Phys ; 146(6): 064702, 2017 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-28201886

RESUMEN

Using x-ray photoemission spectroscopy, we investigated the self-metalation of free-base tetraphenylporphyrin (2HTPP) on thin MgO(100) films on Ag(100). The deposition of one monolayer 2HTPP on MgO results in the formation of magnesium(ii) tetraphenylporphyrin (MgTPP) at room temperature. We demonstrate that the efficiency of the reaction drastically depends on the morphology of the oxide layers. The latter is changed by varying the substrate temperature during the oxide growth. We observe the complete metalation of the 2HTPP monolayer when the MgO films are grown at 393 K. The increase of the growth temperature to 573 K leads to the reduction of the percentage of metalated molecules to ∼50%. We ascribe these results to the fact that MgTPP formation takes place through the hydroxilation of steps and defects on the MgO surface, which leads to an increase of the OH component in the O 1s line.

9.
Phys Rev Lett ; 117(12): 126401, 2016 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-27689285

RESUMEN

As they combine decent mobilities with extremely long carrier lifetimes, organic-inorganic perovskites open a whole new field in optoelectronics. Measurements of their underlying electronic structure, however, are still lacking. Using angle-resolved photoelectron spectroscopy, we measure the valence band dispersion of single-crystal CH_{3}NH_{3}PbBr_{3}. The dispersion of the highest energy band is extracted applying a modified leading edge method, which accounts for the particular density of states of organic-inorganic perovskites. The surface Brillouin zone is consistent with bulk-terminated surfaces both in the low-temperature orthorhombic and the high-temperature cubic phase. In the low-temperature phase, we find a ring-shaped valence band maximum with a radius of 0.043 Å^{-1}, centered around a 0.16 eV deep local minimum in the dispersion of the valence band at the high-symmetry point. Intense circular dichroism is observed. This dispersion is the result of strong spin-orbit coupling. Spin-orbit coupling is also present in the room-temperature phase. The coupling strength is one of the largest ones reported so far.

10.
J Phys Condens Matter ; 28(5): 055001, 2016 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-26789862

RESUMEN

Two-photon photoelectron spectroscopy is used to study the unoccupied electronic states of cobalt oxide layers on Ir(1 0 0). For thicker layers of (1 0 0) orientation the conduction band minimum is found 2 eV above the Fermi level. Layers with (1 1 1) orientation and thickness ≤4 bilayers show a peak around 3.4 eV energy and no evidence for the conduction band minimum. This is attributed to the metallic character of thin CoO(1 1 1) layers.

11.
J Phys Condens Matter ; 26(39): 393001, 2014 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-25164535

RESUMEN

Image-potential states of graphene on various substrates have been investigated by two-photon photoemission and scanning tunneling spectroscopy. They are used as a probe for the graphene-substrate interaction and resulting changes in the (local) work function. The latter is driven by the work function difference between graphene and the substrate. This results in a charge transfer which also contributes to core-level shifts in x-ray photoemission. In this review article, we give an overview over the theoretical models and the experimental data for image-potential states and work function of graphene on various substrates.

12.
Phys Rev Lett ; 92(12): 126801, 2004 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-15089696

RESUMEN

Carrier recombination at the Si(100) c(4 x 2) surface and the underlying surface electronic structure is unraveled by a combination of two-photon photoemission and many-body perturbation theory: An electron excited to the silicon conduction band by a femtosecond infrared laser pulse scatters within 220 ps to the unoccupied surface band, needs 1.5 ps to jump to the band bottom via emission of optical phonons, and finally relaxes within 5 ps with an excited hole in the occupied surface band to form an exciton living for nanoseconds.

13.
Phys Rev Lett ; 92(12): 126803, 2004 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-15089698

RESUMEN

The scattering of electrons in image-potential states by Cu adatoms on Cu(001) surfaces has been investigated by means of time- and angle-resolved two-photon photoemission. Several interband and intraband-scattering mechanisms have been identified and their contributions to the total decay of the states determined quantitatively. The adsorbates mainly cause quasielastic scattering processes. Inelastic processes in contrast are due to interactions with electrons in the substrate and are not significantly increased by Cu adatoms. Quasielastic scattering into bulk bands contributes significantly to the depopulation of surface states.

14.
Phys Rev Lett ; 88(9): 096802, 2002 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-11864040

RESUMEN

The dynamics of image-potential states on Cu(119) have been studied with two-photon photoemission. Direction-dependent quasielastic scattering processes with large momentum transfer are attributed to the finite terrace-width distribution on the stepped surface. This effectively couples image-potential states via interband scattering and leads to an asymmetry of the decay rate. Electrons in the first image-potential state live apparently longer when running upstairs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...