Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 14(2): 2782-2793, 2022 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-34995443

RESUMEN

The sluggish charge transport kinetics that exist in the energy storage process of all-solid-state supercapacitors (ASSSCs) can be improved by designing open hierarchical porous structures for binder-free electrodes. Herein, a template-directed strategy is developed to fabricate open hierarchical porous Ni-Co-Zn-P nanoplate arrays (NCZP6T) through phosphating the electrodeposited NiCo-LDH nanosheets loaded on a template. At first, porous conductive NiZn alloy nanoplate arrays are rationally devised as the template by a strong magnetic field (SMF)-assisted electrodeposition. The Lorentz force caused by coupling the SMF with the electrical current induces a magnetohydrodynamic (MHD) flow (including the micro-MHD flow), which homogenizes the deposition coating, tunes the nucleation and growth of the NiZn alloy, and produces pores in the nanoplates. The open hierarchical porous structure offers a larger specific surface area and pore volume for accelerating charge transport and gives a synergistic effect between the inner porous conductive NiZn array template and the outer electrochemical active phosphides for high-performance hybrid ASSSCs. Accordingly, the battery-type electrode of NCZP6T shows a much higher specific capacitance of 3.81 F cm-2 at 1 mA cm-2, enhanced rate capability, and remarkable cycling stability at progressively varying current densities. Finally, the NCZP6T//FeS ASSSC delivers a high energy density of 77 µW h cm-2 at a large power density of 12 mW cm-2, outperforming most state-of-the-art supercapacitors.

2.
ACS Appl Mater Interfaces ; 12(30): 33690-33701, 2020 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-32573188

RESUMEN

The abundant mass and charge transfer involved in Faradaic redox reactions are largely determined by microstructures including the surface area and porosity, elemental composition and electrical conductivity of bimetallic sulfides. Here, a high magnetic field (HMF) was introduced to tune these intrinsic characters for superior supercapacitor electrodes. We developed a novel HMF-controlled anion-exchange methodology to prepare the one-dimensional (1D) bunched Zn-Co-S yolk-shell balls (ZCS6T BYSBs). The HMF-induced directional growth and alignment of Zn0.76Co0.24S drive the directional 1D assembly. The as-obtained ZCS6T BYSBs possess larger surface area/pore volume, higher crystallinity and electrical conductivity, richer electroactive elements, and favorable axial electron and ion transport because of HMF-enhanced favorable ion diffusion and exchange kinetics. Flexible S, N codoped carbon nanotubes/graphene films embedded with the ZCS6T BYSBs (CZS6T/CNTs/SNGS) were fabricated by vacuum filtration and one-step S, N codoping and reduction of graphene oxides to improve structural stability and charge transport. The CZS6T/CNTs/SNGS electrode displayed impressive enhanced specific capacitance and rate capability with 78.7% capacitance retention at 30 A g-1. Furthermore, the CZS6T/CNTs/SNGS//CNTs/SNGS asymmetric supercapacitor delivered remarkable cycling stability with a high energy density of 41.1 W h kg-1 at a large power density of 9022 W kg-1.

3.
IUCrJ ; 6(Pt 3): 366-372, 2019 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-31098018

RESUMEN

Stress-induced martensitic detwinning and martensitic transformation during step-wise compression in an austenite Ni-Mn-Ga matrix with a martensite cluster under uniaxial loading have been investigated by electron backscatter diffraction, focusing on the crystallographic features of microstructure evolution. The results indicate that detwinning occurs on twins with a high Schmid factor for both intra-plate and inter-plate twins in the hierarchical structure, resulting in a nonmodulated (NM) martensite composed only of favourable variants with [001]NM orientation away from the compression axis. Moreover, the stress-induced martensitic transformation occurs at higher stress levels, undergoing a three-stage transformation from austenite to a twin variant pair and finally to a single variant with increasing compressive stress, and theoretical calculation shows that the corresponding crystallographic configuration is accommodated to the compression stress. The present research not only provides a comprehensive understanding of martensitic variant detwinning and martensitic transformation under compression stress, but also offers important guidelines for the mechanical training process of martensite.

4.
Sci Rep ; 8(1): 10641, 2018 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-30006519

RESUMEN

Peritectic alloy Cu-10.5 at.% Sn was directionally solidified at various growth speeds under a transverse static magnetic field. The experimental results indicated that the magnetic field caused the deformation of macroscopic interface morphology, the crystal orientation of primary phase along solidification direction, and the occurrence of peritectic reaction. The numerical simulations showed that the application of the magnetic field induced the formation of a unidirectional thermoelectric magnetic convection (TEMC), which modified solute transport in the liquid phase thereby enriching the solute concentration both at the sample and tri-junction scales. The modification of solidification structures under the magnetic field should be attributed to TEMC driven heat transfer and solute transport.

5.
Sci Rep ; 8(1): 7945, 2018 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-29786064

RESUMEN

Aluminum alloy in situ functionally graded materials (FGMs) have been successfully fabricated using directional solidification under an axial static magnetic field. Al-Zn, Al-Ni and Al-Cu alloys with a hypereutectic composition were selected to produce FGMs. Experimental results show that the graded composition of the primary phases (i.e., Zn, Al3Ni and Al2Cu) is obvious along the longitudinal section of the sample. The graded composition of the primary phases could be controlled by the value of the magnetic field, growth rate and temperature gradient. A proposed model and simulations are carried out to explain the origin of the graded composition of the primary phases in FGMs during directional solidification under an axial static magnetic field. It should be attributed to the combined actions of heavier species migration under gravity force and thermoelectric (TE) magnetic convection under magnetic field. Furthermore, it can be found that the magnetic field can induce the columnar FGMs to change into equiaxed FGMs. This work not only presents a new approach to fabricate FGMs using the directional solidification under an axial static magnetic field but also deeply understands the effect of the solute migration and temperature distribution on the crystal growth during directional solidification.

6.
Sci Rep ; 7: 45834, 2017 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-28367991

RESUMEN

Understanding the macrosegregation formed by applying magnetic fields is of high commercial importance. This work investigates how static magnetic fields control the solute and primary phase distributions in four directionally solidified alloys (i.e., Al-Cu, Al-Si, Al-Ni and Zn-Cu alloys). Experimental results demonstrate that significant axial macrosegregation of the solute and primary phases (i.e., Al2Cu, Si, Al3Ni and Zn5Cu phases) occurs at the initial solidification stage of the samples. This finding is accompanied by two interface transitions in the mushy zone: quasi planar → sloping → quasi planar. The amplitude of the macrosegregation of the primary phases under the magnetic field is related to the magnetic field intensity, temperature gradient and growth speed. The corresponding numerical simulations present a unidirectional thermoelectric (TE) magnetic convection pattern in the mushy zone as a consequence of the interaction between the magnetic field and TE current. Furthermore, a model is proposed to explain the peculiar macrosegregation phenomenon by considering the effect of the forced TE magnetic convection on the solute distribution. The present study not only offers a new approach to control the solute distribution by applying a static magnetic field but also facilitates the understanding of crystal growth in the solute that is controlled by the static magnetic field during directional solidification.

7.
Sci Rep ; 6: 37872, 2016 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-27886265

RESUMEN

Effect of a weak transverse magnetic field on the microstructures in directionally solidified Fe-Ni and Pb-Bi peritectic alloys has been investigated experimentally. The results indicate that the magnetic field can induce the formation of banded and island-like structures and refine the primary phase in peritectic alloys. The above results are enhanced with increasing magnetic field. Furthermore, electron probe micro analyzer (EPMA) analysis reveals that the magnetic field increases the Ni solute content on one side and enhances the solid solubility in the primary phase in the Fe-Ni alloy. The thermoelectric (TE) power difference at the liquid/solid interface of the Pb-Bi peritectic alloy is measured in situ, and the results show that a TE power difference exists at the liquid/solid interface. 3 D numerical simulations for the TE magnetic convection in the liquid are performed, and the results show that a unidirectional TE magnetic convection forms in the liquid near the liquid/solid interface during directional solidification under a transverse magnetic field and that the amplitude of the TE magnetic convection at different scales is different. The TE magnetic convections on the macroscopic interface and the cell/dendrite scales are responsible for the modification of microstructures during directional solidification under a magnetic field.

8.
Sci Rep ; 6: 24585, 2016 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-27091383

RESUMEN

Understanding how the magnetic fields affect the formation of reinforced phase during solidification is crucial to tailor the structure and therefor the performance of metal matrix in situ composites. In this study, a hypereutectic Al-40 wt.%Cu alloy has been directionally solidified under various axial magnetic fields and the morphology of Al2Cu phase was quantified in 3D by means of high resolution synchrotron X-ray tomography. With rising magnetic fields, both increase of Al2Cu phase's total volume and decrease of each column's transverse section area were found. These results respectively indicate the growth enhancement and refinement of the primary Al2Cu phase in the magnetic field assisting directional solidification. The thermoelectric magnetic forces (TEMF) causing torque and dislocation multiplication in the faceted primary phases were thought dedicate to respectively the refinement and growth enhancement. To verify this, a real structure based 3D simulation of TEMF in Al2Cu column was carried out, and the dislocations in the Al2Cu phase obtained without and with a 10T high magnetic field were analysed by the transmission electron microscope.

9.
Artículo en Inglés | MEDLINE | ID: mdl-25353887

RESUMEN

We investigate free-surface instabilities occurring in various industrial processes involving liquid metal. Of particular interest is the behavior of the free surface of a pool of liquid metal when it is submitted to an alternating magnetic field. Experimentally, we study the effect of a vertical alternating medium-frequency magnetic field on an initially circular pool. We observe various types of behavior according to magnetic field amplitude, e.g., axisymmetric deformations, azimuthal mode structures, slow radial oscillation of the pool perimeter, and random rotation of the pool around its center. Drop rotation could be attributed to nonsymmetric shape deformations. The effect of oxidation leads to drastic changes in pool behavior. The experimental results are then compared to a linear stability analysis of the free surface of a circular liquid drop.

10.
Phys Rev E Stat Nonlin Soft Matter Phys ; 76(6 Pt 2): 066307, 2007 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-18233917

RESUMEN

The flow structuration of silicon oil (Prandtl number of 10.3) in a open cylindrical pool heated from the center of the surface is investigated numerically. Our purpose is to perform the numerical simulation of experimental results obtained by Favre [Phys. Fluids 9, 1473 (1997)] who observed transitions between steady and axisymmetric flows at sufficiently low values of the Marangoni number (Ma) and various types of instability depending on the height of the fluid. The hydrothermal wave regime has been obtained at critical values of Ma which depend on the Bond number and on the aspect ratio. The numerical results are in good agreement with the experimental ones.

11.
Phys Rev E Stat Nonlin Soft Matter Phys ; 73(6 Pt 2): 066303, 2006 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-16906972

RESUMEN

We analyze the linear stability of the edge of a thin liquid metal layer subject to a transverse high-frequency ac magnetic field. The layer is treated as a perfectly conducting liquid sheet that allows us to solve the problem analytically for both a semi-infinite geometry with a straight edge and a thin disk of finite radius. It is shown that the long-wave perturbations of a straight edge are monotonically unstable when the wave number exceeds the critical value k(c) = F0/(gamma l0), which is determined by the linear density of the electromagnetic force F0 acting on the edge, the surface tension gamma, and the effective arclength of edge thickness l0. Perturbations with wavelength shorter than critical are stabilized by the surface tension, whereas the growth rate of long-wave perturbations reduces as similar to k for k --> 0. Thus, there is the fastest growing perturbation with the wave number k max = 2/3 k(c). When the layer is arranged vertically, long-wave perturbations are stabilized by the gravity, and the critical perturbation is characterized by the capillary wave number k(c) = square root of (g rho/gamma), where g is the acceleration due to gravity and rho is the density of metal. In this case, the critical linear density of electromagnetic force is F(0,c) = 2k(c)l0 gamma, which corresponds to the critical current amplitude I(0,c) = 4 square root of (pi k(c) l0L gamma/mu 0) when the magnetic field is generated by a straight wire at the distance L directly above the edge. By applying the general approach developed for the semi-infinite sheet, we find that a circular disk of radius R0 placed in a transverse uniform high-frequency ac magnetic field with the induction amplitude B0 becomes linearly unstable with respect to exponentially growing perturbation with the azimuthal wave number m = 2 when the magnetic Bond number exceeds Bm(c) = B(0)2 R(0)2 / (2 mu 0 l0 gamma) = 3 pi. For Bm > Bm(c), the wave number of the fastest growing perturbation is m(max) = [2Bm/(3 pi)]. These theoretical results agree well with the experimental observations.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...