Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Water Health ; 19(3): 436-447, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34152296

RESUMEN

Giardia duodenalis and Cryptosporidium spp. are two of the most prominent aetiological agents of waterborne diseases. Therefore, efficient and affordable methodologies for identifying and quantifying these parasites in water are increasingly necessary. USEPA Method 1623.1 is a widely used and validated protocol for detecting these parasites in water samples. It consists of a concentration step, followed by parasite purification and visualization by immunofluorescence microscopy. Although efficient, this method has a high cost particularly due to the immunomagnetic separation (IMS) step, which is most needed with complex and highly contaminated samples. Based on this, the present study aimed to determine whether it is possible to maintain the efficiency of Method 1623.1 while reducing the amount of beads per reaction, using as a matrix the challenge water recommended by the World Health Organization. As for Giardia cysts, a satisfactory recovery efficiency (RE) was obtained using 50% less IMS beads. This was evaluated both with a commercial cyst suspension (56.1% recovery) and an analytical quality assessment (47.5% recovery). Although RE rates obtained for Cryptosporidium parvum did not meet Method 1623.1 criteria in any of the experimental conditions tested, results presented in this paper indicated the relevance of the described adaptations, even in challenge water.


Asunto(s)
Criptosporidiosis , Cryptosporidium , Animales , Separación Inmunomagnética , Oocistos , Agua
2.
J Environ Manage ; 288: 112412, 2021 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-33823447

RESUMEN

This study evaluated the impact of a 50% reduction of filter media depth in Household Slow Sand Filters (HSSFs) on continuous flow to remove physicochemical and microbiological parameters from river water. Furthermore, simple pre-treatment and disinfection processes were evaluated as additional treatments. Two filter models with different filtration layer depths were evaluated: a traditional one with 50 cm media depth (T-HSSF) and a compact one (C-HSSF) with 25 cm. HSSFs were fed with pre-treated river water (24-h water sedimentation followed by synthetic fabric filtration) for 436 days at a constant filtration rate of 0.90 m3 m-2 day-1 with a daily production of 48 L day-1. Sodium hypochlorite (2.0 mg L-1 of NaOCl 2.5% for 30 min) was used to disinfect the filtered water. Water samples were analysed weekly for parameters such as turbidity, organic matter, colour and E. coli, among others. Removal of protozoan cysts and oocysts by the HSSFs were also evaluated. After pretreatment, turbidity from the HSSF river water was reduced to 13.2 ± 14.6 NTU, allowing the filters to operate. Statistical analysis indicated no significant difference (p > 0.05) between T-HSSF and C-HSSF efficiencies in all evaluated parameters throughout operation time. Hence, media depth reduction did not hinder continuous HSSF performance for almost all the evaluated parameters. However, it may have affected Giardia cysts retaining, which passed through the thinner media on one evaluation day. Disinfection was effective in reducing remaining bacteria from filtered water; however, it was ineffective to inactivate protozoa. The reduction in the filtration layer did not affect the overall filtered water quality or quantity showing that a compact HSSF model may be a viable option for decentralized water treatment.


Asunto(s)
Arena , Purificación del Agua , Escherichia coli , Composición Familiar , Filtración , Dióxido de Silicio
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...