Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Phytoremediation ; 23(3): 279-290, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33040612

RESUMEN

This study investigates the impact of Glomus mosseae on heavy metal(loid) (HM) uptake efficiency of pea (Pisum sativum L.) plants along with physiological and biochemical parameters. Plants were grown in soil spiked with HMs (Pb and As: 50 and 100 mg kg-1; Cd: 25 and 50 mg kg-1) and a multi-metal(loid) (Mm: Pb + Cd + As) combination, inoculated/non-inoculated with G. mosseae. A dose-dependent increase in HM accumulation was observed in plants upon harvest at 60 days. Plant growth, concentration of photosynthetic pigments, total nitrogen, and carbohydrates reduced, whereas enzymatic [catalase (CAT), superoxide dismutase (SOD), and ascorbate peroxidase (APX)] and non-enzymatic (proline and total phenolics) antioxidants increased upon HM stress. Inoculation with G. mosseae led to an increase in plant growth, concentration of photosynthetic pigments, carbohydrate, nitrogen, and defence antioxidants (whereas proline decreased) which was statistically significant (p ≤ 0.05). This symbiosis can be applied for onsite remediation of Pb and Cd contaminated soil by virtue of accumulation efficiency and adaptive response of pea plants inoculated with G. mosseae. Since the amount of HMs in edible parts exceeded the maximum permissible limits recommended by FAO/WHO, pea must not be cultivated in HM-contaminated soil for agricultural purpose due to associated toxicity. Novelty statement  To our knowledge, phytoremediation potential of Pea in synchronization with Glomus mosseae has not been evaluated previously. This study highlights: • Pea-AMF symbiosis can be applied for Pb and/or Cd phytoremediation. • Target Hazard Quotient >1 for Pb, Cd and As; caution to food chain exposure required. • Nonenzymatic (proline, TPC) and enzymatic (CAT, SOD, APX) antioxidants play a key role in ROS detoxification.


Asunto(s)
Arsénico , Contaminantes del Suelo , Biodegradación Ambiental , Cadmio , Hongos , Plomo , Pisum sativum , Raíces de Plantas/química , Suelo , Contaminantes del Suelo/análisis , Simbiosis
2.
Ecotoxicol Environ Saf ; 183: 109570, 2019 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-31442811

RESUMEN

A pot study was conducted to assess the phytoremediation potential of Spinach plants along with their physiological and biochemical response when grown in soil contaminated with heavy metal(loid)s (HMs). Plants were grown under different doses of Pb, Cd and As; and their metal(loid) accumulation efficiency was studied upon harvest; expressed in terms of bioabsorption coefficient (BAC), bioconcentration factor (BCF) and translocation factor (TF). Results showed significant (p ≤ 0.05) difference in physiological and biochemical mechanisms of plants as detected through decrease in concentration of cellular constituents (pigments, carbohydrates, total nitrogen content); and increase in antioxidants (both enzymatic and non-enzymatic). Despite of accumulating high amount of HMs in tissues, no visible signs of toxicity were seen; and hence the efficient survival and defense mechanism shown by spinach plants conclude that they are a viable option to be used for phytoremediation of sites contaminated with Cd and Pb. Since the content of Cd and Pb in edible part was higher than safe limits prescribed by USEPA, the present investigation also highlights the ecological hazards that may result upon cultivation of spinach in contaminated soil for agricultural purpose; or its accidental exposure to food chain when grown for phytoremediation.


Asunto(s)
Antioxidantes/metabolismo , Metaloides/toxicidad , Metales Pesados/toxicidad , Contaminantes del Suelo/toxicidad , Spinacia oleracea/efectos de los fármacos , Agricultura , Biodegradación Ambiental , Ecología , Metaloides/análisis , Metales Pesados/análisis , Suelo/química , Contaminantes del Suelo/análisis , Spinacia oleracea/crecimiento & desarrollo , Spinacia oleracea/metabolismo
3.
Bull Environ Contam Toxicol ; 103(3): 490-495, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31222424

RESUMEN

A study was conducted to determine the effect of ethylenediaminetetraacetic acid (EDTA) on phytoextraction potential of radish and cabbage. Plant biomass, photosynthetic pigments, proline and phenolics were significantly affected by the accumulation of heavy metals (HM). The metal uptake potential was increased significantly by the application of EDTA. Target hazard quotient (THQ) associated with exposure of these contaminants to food chain was calculated. Agronomic interventions to increase mineral levels in crops often increases the leaf concentrations only, the mineral concentration in edible portions are not increased at desired level due to low mobility of Zn in phloem. Since the leaves of both these crops are edible and a component of staple vegetarian diet, biofortification through Zn present in soil and its solubilization and mobilization through chelators can be implemented. However in no such instance these crops should be consumed when grown on Pb contaminated soil due to associated hazards.


Asunto(s)
Brassica/metabolismo , Ácido Edético/química , Inocuidad de los Alimentos , Metales Pesados/metabolismo , Raphanus/efectos de los fármacos , Raphanus/metabolismo , Contaminantes del Suelo/metabolismo , Biodegradación Ambiental , Biomasa , Brassica/efectos de los fármacos , Metales Pesados/toxicidad , Medición de Riesgo , Suelo/química , Contaminantes del Suelo/toxicidad
4.
Int J Phytoremediation ; 20(9): 885-894, 2018 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-29873534

RESUMEN

In the present study, the phytoremedation potential along with growth, physiological and biochemical response of tomato (Solanum lycopersicum) was assessed under heavy metal(loid) (HM) and arbuscular mycorrhizal fungus (AMF) amendment. Effect of AMF on uptake and accumulation of metal(loid)s was assessed and accumulation characteristics were expressed in terms of bioabsorption coefficient (BAC), bioconcentration factor (BCF), translocation factor (TLF) and transfer factor (TF). Results showed that AMF-inoculated plants showed not only a better growth, chlorophyll content, strengthened non-enzymatic and enzymatic defense mechanism, but also accumulated higher concentration of metal(loid)s. The correlation between biochemical and physiological parameters was significant at 0.01 level. A significant difference (p ≤ 0.001) in antioxidant enzyme activity was found on increasing metal(loid) dose and application of AMF. The accumulation of Cd and Pb in edible part exceeded the chronic reference dose stated by USEPA. The target hazard quotient (THQ) was >1 for Cd and Pb, whereas <1 for As. The study shows that tomato has good potential as Cd and Pb phytoremediator, hence must not be consumed when grown on Cd or Pb contaminated sites.


Asunto(s)
Micorrizas , Contaminantes del Suelo/análisis , Solanum lycopersicum , Antioxidantes , Biodegradación Ambiental , Raíces de Plantas
5.
Chemosphere ; 194: 158-170, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29202268

RESUMEN

Aquatic bryophytes can accumulate extremely high levels of chemical elements because of their unique morphology and physiology which is markedly different from vascular plants. Four aquatic mosses-Fontinalis squamosa, Brachythecium rivulare, Platyhypnidium riparioides, Thamnobryum alopecurum-and a freshwater red alga Lemanea fluviatilis along with water samples from the streams of Góis mine region in Central Portugal were analyzed for 46 elements. Despite being below detection levels in the water samples, the elements Zr, V, Cr, Mo, Ru, Os, Rh, Ir, Pt, Ag, Ge and Bi were obtained in the plant samples. The moss T. alopecurum had the highest mean concentrations of 19 elements followed by B. rivulare (15 elements). Maximum accumulation of Rb, Ta and Au, however, was seen in the alga L. fluviatilis. Bioconcentration factors > 106 were obtained for a few metals. The investigation confirms that aquatic bryophytes can be suitable for water quality biomonitoring and biogeochemical prospecting in fresh water bodies owing to their high accumulative capacity of multi-elements from their aquatic ambient.


Asunto(s)
Monitoreo del Ambiente/métodos , Metales/farmacocinética , Plantas/metabolismo , Calidad del Agua , Briófitas/metabolismo , Agua Dulce/química , Metales/análisis , Minería , Portugal , Rhodophyta/metabolismo , Ríos/química
6.
Ecotoxicol Environ Saf ; 148: 318-326, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29091834

RESUMEN

Arbuscular mycorrhizal fungi (AMF) aids in plant establishment at heavy metal(loid) (HM) contaminated soils, strengthening plant defense system along with promoting growth. A pot experiment was carried out to evaluate the effect of AMF on eggplants grown under HM stress. Further, the potential health risks of HM exposure to the humans via dietary intake of eggplant were also estimated. Results showed that AMF application improved growth, biomass and antioxidative defense response of plants against HM stress. Significant difference (p ≤ 0.001) in parameters under study was found on increasing metal dose and on application of AMF. Among metal(loid)s maximum uptake was recorded for Pb (29.64mgkg-1 in roots; 23.08mgkg-1 in shoot) followed by As (3.84mgkg-1 in roots; 8.20mgkg-1 in shoot) and, Cd (0.96mgkg-1 in roots; 2.12mgkg-1 in shoot). Based on the accumulation of HM in edible part, Hazard Quotient (HQ) was calculated. HQ was found to be > 1 for Pb, which highlights the risks associated with consumption of Eggplants grown on Pb contaminated soil. However this potential, which was further enhanced by application of AMF, can be harnessed for on-site remediation of Pb contaminated soils. The content of Cd and As in the edible part was found to be within safe limits (HQ < 1) when compared to chronic reference dose stated by USEPA.


Asunto(s)
Inocuidad de los Alimentos , Metales Pesados/metabolismo , Micorrizas/fisiología , Contaminantes del Suelo/metabolismo , Solanum melongena/fisiología , Biomasa , Restauración y Remediación Ambiental , Metales Pesados/análisis , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Medición de Riesgo , Suelo/química , Contaminantes del Suelo/análisis , Solanum melongena/química , Solanum melongena/microbiología
7.
Bull Environ Contam Toxicol ; 98(6): 867-873, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28456824

RESUMEN

A pot experiment was carried out to assess Cd uptake and accumulation efficiency of Sesbania sesban. Plants were grown in soil spiked with 25, 50, 100, 150, 200, 250, and 300 mg/kg Cd. After 120 days, plants were harvested and analyzed for Cd content. A steady increase in Cd accumulation with increasing metal concentration in soil was observed for all treatments. Accumulation of Cd was greatest in roots (86.7 ± 6.3 mg/kg), followed by stem (18.59 ± 1.9 mg/kg), and leaf (3.16 ± 1.1 mg/kg). Chlorophyll content declined with increasing Cd concentration, while proline and protein content increased as compared to control. At higher Cd levels, root, shoot length, and biomass were all significantly reduced (p ≤ 0.001). An increase in total protein along with greater A250/A280 value suggested an increase in metal-protein complexes. Considering the rapid growth, high biomass, accumulation efficiency, and adaptive properties, this plant could be used as a valuable tool for the phytoremediation of Cd contaminated soils.


Asunto(s)
Biodegradación Ambiental , Cadmio/metabolismo , Sesbania/metabolismo , Contaminantes del Suelo/metabolismo , Biomasa , Cadmio/análisis , Metales/metabolismo , Raíces de Plantas/metabolismo , Suelo , Contaminantes del Suelo/análisis
8.
Mar Pollut Bull ; 124(2): 1078-1088, 2017 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-28187966

RESUMEN

The study accentuated the trace metal accumulation and distribution pattern in individual organs of 13 native mangrove plants along with rhizosediments in the Indian Sundarban Wetland. Enrichment of the essential micronutrients (Mn, Fe, Zn, Cu, Co, Ni) was recorded in all plant organs in comparison to non-essential ones, such as Cr, As, Pb, Cd, Hg. Trunk bark and root/pneumatophore showed maximum metal accumulation efficiency. Rhizosediment recorded manifold increase for most of the trace metals than plant tissue, with the following descending order: Fe>Mn>Zn>Cu>Pb>Ni>Cr>Co>As>Cd>Hg. Concentrations of Cu, Ni, Pb and Hg were found to exceed prescribed sediment quality guidelines (SQGs) indicating adverse effect on adjacent biota. Both index of geoaccumulation (Igeo) and enrichment factor (EF) also indicated anthropogenic contamination. Based on high (>1) translocation factor (TF) and bioconcentration factor (BCF) values Sonneratiaapetala and Avicenniaofficinalis could be considered as potential accumulators, of trace metals.


Asunto(s)
Biodegradación Ambiental , Sedimentos Geológicos/química , Metales/metabolismo , Oligoelementos/metabolismo , Contaminantes Químicos del Agua/metabolismo , Humedales , Biota , Monitoreo del Ambiente , India , Mercurio/metabolismo , Metales Pesados/análisis
9.
Chemosphere ; 171: 544-553, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28039833

RESUMEN

The present study was designed to assess the physiological and biochemical changes in roots and shoots of the herb Acalypha indica grown under hydroponic conditions during exposure to lead (Pb) (100-500 mg L-1) for 1-12 d. The accumulation of Pb by A. indica plants was found to be 121.6 and 17.5 mg g-1 dry weight (DW) in roots and shoots, respectively, when exposed to a Pb concentration of 500 mg L-1. The presence of Pb ions in stem, root and leaf tissues was confirmed by scanning electron microscope (SEM) and Energy-dispersive X-ray spectroscopy (EDX) analyses. Concerning the activity of antioxidant enzymes, viz., peroxidase (POX) catalase (CAT) and ascorbate peroxidase (APX), they were induced at various regimes during 5, 8 and 12 d of Pb exposure in both the leaves and roots than untreated controls. Lead treatment increased superoxide dismutase (SOD) activity in both the leaf and root tissues over control, irrespective of the duration of exposure. Anew, it was observed that Pb treatments induced variations in the number and intensity of protein bands. Random amplified polymorphic DNA (RAPD) results show that the Pb treatment caused genotoxicity on DNA molecules as evidenced by the amplification of new bands and the absence of normal DNA amplicons in treated plants. Results confirm that A. indica is a Pb accumulator species, and the antioxidants might play a crucial role in the detoxification of Pb-induced toxic effects.


Asunto(s)
Acalypha/efectos de los fármacos , Plomo/toxicidad , Acalypha/genética , Acalypha/metabolismo , Ascorbato Peroxidasas/metabolismo , Catalasa/metabolismo , ADN de Plantas/efectos de los fármacos , Hidroponía , Peroxidación de Lípido/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Peroxidasa/metabolismo , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/metabolismo , Proteínas de Plantas/metabolismo , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/metabolismo , Brotes de la Planta/efectos de los fármacos , Brotes de la Planta/metabolismo , Plantas Medicinales/efectos de los fármacos , Plantas Medicinales/metabolismo , Técnica del ADN Polimorfo Amplificado Aleatorio , Superóxido Dismutasa/metabolismo
10.
Sci Total Environ ; 568: 350-368, 2016 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-27314898

RESUMEN

The present study highlights the uranium (U) concentrations in water-soil-plant matrices and the efficiency considering a heterogeneous assemblage of terrestrial and aquatic native plant species to act as the biomonitor and phytoremediator for environmental U-contamination in the Sevilha mine (uraniferous region of Beiras, Central Portugal). A total of 53 plant species belonging to 22 families was collected from 24 study sites along with ambient soil and/or water samples. The concentration of U showed wide range of variations in the ambient medium: 7.5 to 557mgkg(-1) for soil and 0.4 to 113µgL(-1) for water. The maximum potential of U accumulation was recorded in roots of the following terrestrial plants: Juncus squarrosus (450mgkg(-1) DW), Carlina corymbosa (181mgkg(-1) DW) and Juncus bufonius (39.9mgkg(-1) DW), followed by the aquatic macrophytes, namely Callitriche stagnalis (55.6mgkg(-1) DW) Lemna minor (53.0mgkg(-1) DW) and Riccia fluitans (50.6mgkg(-1) DW). Accumulation of U in plant tissues exhibited the following decreasing trend: root>leaves>stem>flowers/fruits and this confirms the unique efficiency of roots in accumulating this radionuclide from host soil/sediment (phytostabilization). Overall, the accumulation pattern in the studied aquatic plants (L. minor, R. fluitans, C. stagnalis and Lythrum portula) dominated over most of the terrestrial counterpart. Among terrestrial plants, the higher mean bioconcentration factor (≈1 in roots/rhizomes of C. corymbosa and J. squarrosus) and translocation factor (31 in Andryala integrifolia) were encountered in the representing families Asteraceae and Juncaceae. Hence, these terrestrial plants can be treated as the promising candidates for the development of the phytostabilization or phytoextraction methodologies based on the accumulation, abundance and biomass production.


Asunto(s)
Plantas/metabolismo , Contaminantes Radiactivos del Suelo/metabolismo , Uranio/metabolismo , Contaminantes Radiactivos del Agua/metabolismo , Biodegradación Ambiental , Monitoreo del Ambiente , Restauración y Remediación Ambiental , Sedimentos Geológicos/análisis , Minería , Portugal , Contaminantes Radiactivos del Suelo/análisis , Uranio/análisis , Contaminantes Radiactivos del Agua/análisis
11.
Chemosphere ; 156: 76-87, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27164268

RESUMEN

Phytoremediation potential of uranium (U) was investigated by submerged, free-floating and rooted emergent native aquatic macrophytes inhabiting along the streams of Horta da Vilariça, a uraniferous geochemical region of NE Portugal. The work has been undertaken with the following objectives: (i) to relate the U concentrations in water-sediment-plant system; and (ii) to identify the potentialities of aquatic plants to remediate U-contaminated waters based on accumulation pattern. A total of 25 plant species culminating 233 samples was collected from 15 study points along with surface water and contiguous sediments. Concentrations of U showed wide range of variations both in waters (0.61-5.56 µg L(-1), mean value 1.98 µg L(-1)) and sediments (124-23,910 µg kg(-1), mean value 3929 µg kg(-1)) and this is also reflected in plant species examined. The plant species exhibited the ability to accumulate U several orders of magnitude higher than the surrounding water. Maximum U concentrations was recorded in the bryophyte Scorpiurium deflexifolium (49,639 µg kg(-1)) followed by Fontinalis antipyretica (35,771 µg kg(-1)), shoots of Rorippa sylvestris (33,837 µg kg(-1)), roots of Oenanthe crocata (17,807 µg kg(-1)) as well as in Nasturtium officinale (10,995 µg kg(-1)). Scorpiurium deflexifolium displayed a high bioconcentration factor (BF) of ∼2.5 × 10(4) (mean value). The species Fontinalis antipyretica, Nasturtium officinale (roots) and Rorippa sylvestris (shoots) exhibited the mean BFs of 1.7 × 10(4), 5 × 10(3) and 4.8 × 10(3) respectively. Maximum translocation factor (TF) was very much pronounced in the rooted perennial herb Rorippa sylvestris showing extreme ability to transport U for the shoots and seems to be promising candidate to be used as bioindicator species.


Asunto(s)
Uranio/metabolismo , Contaminantes Radiactivos del Agua/metabolismo , Biodegradación Ambiental , Briófitas/metabolismo , Bryopsida/metabolismo , Monitoreo del Ambiente , Nasturtium/metabolismo , Oenanthe/metabolismo , Raíces de Plantas/metabolismo , Brotes de la Planta/metabolismo , Portugal , Ríos/química , Rorippa/metabolismo , Uranio/análisis , Contaminantes Radiactivos del Agua/análisis
12.
Bot Stud ; 55(1): 54, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28597420

RESUMEN

BACKGROUND: Lead (Pb) heavy metal pollution in water bodies is one of the serious problems across the world. This study was designed to find out the effect of Pb toxicity on physiological and biochemical changes in Eichhornia crassipes (water hyacinth) seedlings. RESULTS: The plant growth was significantly inhibited (50%) at 1000 mg/L Pb concentration. Accumulation of Pb was higher in root than in shoot tissues. The maximum level of Pb accumulation was noticed in roots (5.45%) followed by petiole (2.72%) and leaf tissues (0.66%). Increasing the Pb concentration gradually decreased the chlorophyll content. Intracellular distribution of Pb was also studied using SEM-EDX, where the Pb deposition was observed in both root and leaf tissues. MDA content increased in both the leaf and root tissues up to the 400 mg/L Pb treatment and slightly decreased at higher concentrations. The activity of antioxidative enzymes, such as APX and POX, positively correlated with Pb treatment, while in the case of SOD and CAT enzymes increased up to 800 mg/L treatment and then slightly decreased at higher concentration in both leaf and root tissues. CONCLUSIONS: These results suggest that water hyacinth plants have efficient mechanism to tolerate Pb toxicity, as evidenced by an increased level of antioxidative enzymes. Results clearly indicate that water hyacinth is a feasible plant for hyperaccumulation of heavy metals from polluted wetlands.

13.
Int J Phytoremediation ; 17(9): 885-94, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25581820

RESUMEN

The work investigates on the potential of ten mangrove species for absorption, accumulation and partitioning of trace metal(loid)s in individual plant tissues (leaves, bark and root/pneumatophore) at two study sites of Indian Sundarban Wetland. The metal(loid) concentration in host sediments and their geochemical characteristics were also considered. Mangrove sediments showed unique potential in many- fold increase for most metal(loid)s than plant tissues due to their inherent physicochemical properties. The ranges of concentration of trace metal(loid)s for As, Cd, Co, Cr, Cu, Fe, Hg, Mn, Ni, Pb and Zn in plant tissue were 0.006-0.31, 0.02-2.97, 0.10-4.80, 0.13-6.49, 4.46-48.30, 9.2-938.1, 0.02-0.13, 9.8-1726, 11-5.41, 0.04-7.64, 3.81-52.20 µg g (-1)respectively. The bio- concentration factor (BCF) showed its maximum value (15.5) in Excoecaria agallocha for Cd, suggesting that it can be considered as a high-efficient plant for heavy metal bioaccumulation. Among all metals, Cd and Zn were highly bioaccumulated in E. agallocha (2.97 and 52.2 µg g (-1) respectively. Our findings suggest that the species may be classified as efficient metal trap for Cd in aerial parts, as indicated by higher metal accumulation in the leaves combined with BCF and translocation factor (TF) values.


Asunto(s)
Arsénico/metabolismo , Metales Pesados/metabolismo , Árboles/metabolismo , Contaminantes Químicos del Agua/metabolismo , Humedales , Biodegradación Ambiental , Sedimentos Geológicos/análisis , Especificidad de la Especie
14.
Environ Sci Pollut Res Int ; 22(6): 4597-608, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25323404

RESUMEN

Mercury heavy metal pollution has become an important environmental problem worldwide. Accumulation of mercury ions by plants may disrupt many cellular functions and block normal growth and development. To assess mercury heavy metal toxicity, we performed an experiment focusing on the responses of Eichhornia crassipes to mercury-induced oxidative stress. E. crassipes seedlings were exposed to varying concentrations of mercury to investigate the level of mercury ions accumulation, changes in growth patterns, antioxidant defense mechanisms, and DNA damage under hydroponics system. Results showed that plant growth rate was significantly inhibited (52 %) at 50 mg/L treatment. Accumulation of mercury ion level were 1.99 mg/g dry weight, 1.74 mg/g dry weight, and 1.39 mg/g dry weight in root, leaf, and petiole tissues, respectively. There was a decreasing trend for chlorophyll a, b, and carotenoids with increasing the concentration of mercury ions. Both the ascorbate peroxidase and malondialdehyde contents showed increased trend in leaves and roots up to 30 mg/L mercury treatment and slightly decreased at the higher concentrations. There was a positive correlation between heavy metal dose and superoxide dismutase, catalase, and peroxidase antioxidative enzyme activities which could be used as biomarkers to monitor pollution in E. crassipes. Due to heavy metal stress, some of the normal DNA bands were disappeared and additional bands were amplified compared to the control in the random amplified polymorphic DNA (RAPD) profile. Random amplified polymorphic DNA results indicated that genomic template stability was significantly affected by mercury heavy metal treatment. We concluded that DNA changes determined by random amplified polymorphic DNA assay evolved a useful molecular marker for detection of genotoxic effects of mercury heavy metal contamination in plant species.


Asunto(s)
Antioxidantes/metabolismo , Daño del ADN , Eichhornia/efectos de los fármacos , Contaminantes Ambientales/toxicidad , Mercurio/toxicidad , Estrés Oxidativo/efectos de los fármacos , Biodegradación Ambiental , Biomasa , Fenómenos Químicos , Eichhornia/química , Eichhornia/genética , Eichhornia/crecimiento & desarrollo , Contaminantes Ambientales/análisis , Mercurio/análisis , Hojas de la Planta/química , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo , Raíces de Plantas/química , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Técnica del ADN Polimorfo Amplificado Aleatorio , Plantones/química , Plantones/efectos de los fármacos , Plantones/genética , Plantones/crecimiento & desarrollo
15.
Ecotoxicol Environ Saf ; 108: 249-57, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25103568

RESUMEN

The present study was aimed at evaluating phytotoxicity of various concentrations of lead nitrate (0, 100, 200, 400, 600, 800 and 1000mgL(-1)) in Sesbania grandiflora. The seedling growth was significantly affected (46%) at 1000mgL(-1) lead (Pb) treatment. Accumulation of Pb content was high in root (118mgg(-1) dry weight) than in shoot (23mgg(-1) dry weight). The level of photosynthetic pigment contents was gradually increased with increasing concentrations of Pb. Malondialdehyde (MDA) content increased in both the leaves as well as roots at 600mgL(-1) Pb treatment and decreased at higher concentrations. The activity of antioxidative enzymes such as superoxide dismutase and peroxidase were positively correlated with Pb treatment while catalase and ascorbate peroxidase activities increased up to 600mgL(-1) Pb treatment and then slightly decreased at higher concentrations. Isozyme banding pattern revealed the appearance of additional isoforms of superoxide dismutase and peroxidase in Pb treated leaf tissues. Isozyme band intensity was more consistent with the respective changes in antioxidative enzyme activities. Random amplified polymorphic DNA results indicated that genomic template stability (GTS) was significantly affected based on Pb concentrations. The present results suggest that higher concentrations of Pb enhanced the oxidative damage by over production of ROS in S. grandiflora that had potential tolerance mechanism to Pb as evidenced by increased level of photosynthetic pigments, MDA content, and the level of antioxidative enzymes. Retention of high levels of Pb in root indicated that S. grandiflora has potential for phytoextracting heavy metals by rhizofiltration.


Asunto(s)
Antioxidantes/metabolismo , Plomo/toxicidad , Malondialdehído/metabolismo , Nitratos/toxicidad , Pigmentos Biológicos/metabolismo , Sesbania/efectos de los fármacos , Ascorbato Peroxidasas/metabolismo , Biodegradación Ambiental , Catalasa/metabolismo , Perfilación de la Expresión Génica , Genoma de Planta , Genómica , Inactivación Metabólica , Plomo/metabolismo , Plomo/farmacocinética , Peroxidación de Lípido/efectos de los fármacos , Nitratos/metabolismo , Nitratos/farmacocinética , Fotosíntesis/efectos de los fármacos , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/metabolismo , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/metabolismo , Plantones/efectos de los fármacos , Plantones/metabolismo , Sesbania/genética , Sesbania/metabolismo , Superóxido Dismutasa/metabolismo
16.
Sci Total Environ ; 470-471: 993-1002, 2014 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-24239820

RESUMEN

A study was undertaken to determine Uranium concentrations in water and aquatic plants in the uraniferous region of Beiras, Central Portugal. Samples were collected from running water (n=200) at places where aquatic species were observed. Plant samples were collected from 28 species of submerged, free-floating and rooted emergent plants including 2 bryophytes and 1 pteridophyte. Uranium concentrations in surface waters ranged from 0.23 to 1,217 µg L(-1). The aquatic plant species studied, including several previously untested species, exhibited the ability to accumulate U in concentrations many times that of the ambient water. In general submerged plants exhibited higher U content followed by rooted emergent and free floating species. The highest U concentrations were observed in the bryophyte Fontinalis antipyretica (up to 4,979 mg kg(-1)) followed by Callitriche stagnalis (1963mgkg(-1)), Callitriche hamulata (379 mg kg(-1)), Ranunculus peltatus subsp. saniculifolius (243 mg kg(-1)), Callitriche lusitanica (218 mg kg(-1)), and Ranunculus trichophyllus (65.8 mg kg(-1)). In two out of three rooted emergent species U seemed to be preferentially partitioned in rhizome/roots with highest rhizome U content recorded in Typha latifolia (380 mg kg(-1)). Among the free-floating species, the highest U content (42.5 mg kg(-1)) was seen in Lemna minor. The bryophyte F. antipyretica and Callitrichaceae members seem to be promising candidates for the development of phytofiltration methodologies based on U accumulation, abundance and biomass production.


Asunto(s)
Plantas/química , Uranio/análisis , Contaminantes Radiactivos del Agua/análisis , Organismos Acuáticos/química , Araceae/química , Biodegradación Ambiental , Briófitas/química , Bryopsida/química , Monitoreo del Ambiente , Portugal
17.
Chemosphere ; 90(8): 2216-25, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23098582

RESUMEN

Significant accumulation of heavy metals in soils and flora exists around the abandoned Barbadalhos Pb mine in Central Portugal. Soil and plant samples [49 species] were collected from two line transects, LT 1 and LT 2, in the mineralized and non-mineralized area, respectively to gain a comprehensive picture of heavy metals in soils and flora to assess its potential for phytoremediation. Phytosociological inventories of the vegetation were made using the Braun-Blanquet cover-abundance scale. Metal concentrations in soil ranged from (in mg kg(-1)): 98-9330 [Pb], 110-517 [Zn], 7.1-50 [Co], 69-123 [Cr], 31-193 [Cu], 33400-98500 [Fe], 7.7-51 [Ni], 0.95-13 [Ag], 2.8-208 [As], and 71-2220 [Mn] along LT 1; and 24-93 [Pb], 30-162 [Zn], 3.7-34 [Co], 61-196 [Cr], 21-46 [Cu], 24100-59400 [Fe], 17-87 [Ni], 0.71-1.9 [Ag], 4.3-12 [As], and 44-1800 [Mn] along LT 2. Plant metal content ranged from (in mg kg(-1)): 1.11-548 [Pb], 7.06-1020 [Zn], 0.08-2.09 [Co], 0.09-2.03 [Cr], 2.63-38.5 [Cu], 10.4-4450 [Fe], 0.38-8.9 [Ni], and 0.03-1.9 [Ag] along LT 1; and 0.94-11.58 [Pb], 2.83-96.5 [Zn], 0.12-1.44 [Co], 0.21-1.49 [Cr], 1.61-22.7 [Cu], 4.6-2050 [Fe], 0.51-4.81 [Ni], and 0.02-0.31 [Ag] along LT 2. Plants with highest uptake of metals were: Cistus salvifolius (548 mg Pb kg(-1)), Digitalis purpurea (1017 mg Zn kg(-1) and 4450 mg Fe kg(-1)). Mentha suavolens and Ruscus ulmifolius were seen to hyperaccumulate Ag (1.9 and 1 mg Ag kg(-1), respectively). More metals and higher concentrations were traced in plants from LT 1, especially for Pb and Zn.


Asunto(s)
Metales Pesados/análisis , Minería , Contaminantes del Suelo/análisis , Suelo/química , Biodegradación Ambiental , Monitoreo del Ambiente , Plomo/análisis , Plantas/química , Plantas/clasificación , Portugal
18.
Sci Total Environ ; 433: 390-7, 2012 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-22820614

RESUMEN

This work focuses on the potential of aquatic plants for bioindication and/or phytofiltration of arsenic from contaminated water. More than 71 species of aquatic plants were collected at 200 sampling points in running waters. The results for the 18 most representative plant species are presented here. The species Ranunculus trichophyllus, Ranunculus peltatus subsp. saniculifolius, Lemna minor, Azolla caroliniana and the leaves of Juncus effusus showed a very highly significant (P<0.001) positive correlation with the presence of arsenic in the water. These species may serve as arsenic indicators. The highest concentration of arsenic was found in Callitriche lusitanica (2346 mg/kg DW), Callitriche brutia (523 mg/kg DW), L. minor (430 mg/kg DW), A. caroliniana (397 mg/kg DW), R. trichophyllus (354 mg/kg DW), Callitriche stagnalis (354 mg/kg DW) and Fontinalis antipyretica (346 mg/kg DW). These results indicate the potential application of these species for phytofiltration of arsenic through constructed treatment wetlands or introduction of these plant species into natural water bodies.


Asunto(s)
Arsénico/metabolismo , Biodegradación Ambiental , Plantas/metabolismo , Monitoreo del Ambiente
19.
Int J Phytoremediation ; 14(3): 221-34, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22567707

RESUMEN

Several species of plants have developed a tolerance to metal that enables them to survive in metal contaminated and polluted sites. Some of these aquatic plants have been reported to accumulate significant amounts of specific trace elements and are, therefore, useful for phytofiltration. This work focuses the potential of aquatic plants for the phytofiltration of uranium (U) from contaminated water. We observed that Callitriche stagnalis, Lemna minor, and Fontinalis antipyretica, which grow in the uraniferous geochemical province of Central Portugal, have been able to accumulate significant amounts of U. The highest concentration of U was found in Callitriche stagnalis (1948.41 mg/kg DW), Fontinalis antipyretica (234.79 mg/kg DW), and Lemna minor (52.98 mg/kg DW). These results indicate their potential for the phytofiltration of U through constructed treatment wetlands or by introducing these plants into natural water bodies in the uraniferous province of Central Portugal.


Asunto(s)
Araceae/metabolismo , Bryopsida/metabolismo , Callitrichinae/metabolismo , Uranio/metabolismo , Contaminantes del Agua/metabolismo , Purificación del Agua/métodos , Animales , Monitoreo del Ambiente , Concentración de Iones de Hidrógeno , Metales/análisis , Metales/metabolismo , Portugal , Factores de Tiempo , Uranio/análisis , Contaminantes del Agua/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...