Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Am J Surg Pathol ; 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38980727

RESUMEN

Emerging therapies for non-small cell lung cancer targeting c-Met overexpression have recently demonstrated promising results. However, the evaluation of c-Met expression can be challenging. We aimed to study the inter and intraobserver reproducibility of c-Met expression evaluation. One hundred ten cases with non-small cell lung cancer (40 biopsies and 70 surgical specimens) were retrospectively selected in a single laboratory (LPCE) and evaluated for c-Met expression. Six pathologists (4 seniors and 2 juniors) evaluated the H-score and made a 3-tier classification of c-Met expression for all cases, using conventional light microscopy (CLM) and whole slide imaging (WSI). The interobserver reproducibility with CLM gave global Cohen Kappa coefficients (ƙ) ranging from 0.581 (95% CI: 0.364-0.771) to 0.763 (95% CI: 0.58-0.92) using the c-Met 3-tier classification and H-score, respectively. ƙ was higher for senior pathologists and biopsy samples. The interobserver reproducibility with WSI gave a global ƙ ranging from 0.543 (95% CI: 0.33-0.724) to 0.905 (95% CI: 0.618-1) using the c-Met H-score and 2-tier classification (≥25% 3+), respectively. ƙ for intraobserver reproducibility between CLM and WSI ranged from 0.713 to 0.898 for the c-Met H-score and from 0.600 to 0.779 for the c-Met 3-tier classification. We demonstrated a moderate to excellent interobserver agreement for c-Met expression with a substantial to excellent intraobserver agreement between CLM and WSI, thereby supporting the development of digital pathology. However, some factors (scoring method, type of tissue samples, and expertise level) affect reproducibility. Our findings highlight the importance of establishing a consensus definition and providing further training, particularly for inexperienced pathologists, for c-Met immunohistochemistry assessment in clinical practice.

2.
Pathology ; 55(7): 929-944, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37863710

RESUMEN

Uveal melanoma (UM) is the most common intraocular tumour in adults, with dismal prognosis once metastases develop, since therapeutic options for the metastatic disease are ineffective. Over the past decade, novel cancer therapies based on immunotherapy have changed the landscape of treatment of different forms of cancer leading to many hopes of improvement in patient overall survival (OS). VISTA, LAG-3 and PRAME are novel promising targets of immunotherapy that have recently gained attention in different solid tumours, but whose relevance in UM remained to be comprehensively evaluated until now. Here, we studied the protein expression of VISTA, LAG-3 and PRAME using immunohistochemistry in representative whole tissue sections from primary UM cases in a cohort of 30 patients from a single centre (Nice University Hospital, Nice, France). The expression of each of these markers was correlated with different clinical and pathological parameters, including onset of metastases and OS. We demonstrated the protein expression of VISTA and LAG-3 in small lymphocytes infiltrating the tumour, while no expression of the proteins was detected in UM cells. For PRAME, nuclear expression was observed in UM cells, but no expression in tumour infiltrating immune cells was identified. Increased levels of VISTA expression in tumour infiltrating lymphocytes (TILs) were associated with nuclear BAP1 expression and better prognosis. Higher levels of LAG-3 in TILs were associated with higher levels of CD8-positive TILs. PRAME nuclear positivity in melanoma cells was associated with epithelioid cell dominant (>90%) UM histological subtype, higher mitotic numbers and a higher percentage of chromosome 8q gain. This study proposes VISTA as a novel relevant immune checkpoint molecule in primary UM and contributes to confirm LAG-3 and PRAME as potentially important immunotherapy targets in the treatment of UM patients, helping to expand the number of immunotherapy candidate molecules that are relevant to modulate in this aggressive cancer.


Asunto(s)
Melanoma , Neoplasias de la Úvea , Adulto , Humanos , Antígenos de Neoplasias/genética , Aberraciones Cromosómicas , Inmunoterapia , Melanoma/genética , Pronóstico , Neoplasias de la Úvea/terapia , Neoplasias de la Úvea/genética
3.
Int J Mol Sci ; 24(13)2023 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-37446253

RESUMEN

Liquid biopsy and circulating tumor cell (CTC) screening has gained interest over the last two decades for detecting almost all solid malignancies. To date, the major limitation in terms of the applicability of CTC screening in daily clinical practice is the lack of reproducibility due to the high number of platforms available that use various technologies (e.g., label-dependent versus label-free detection). Only a few studies have compared different CTC platforms. The aim of this study was to compare the efficiency of four commercially available CTC platforms (Vortex (VTX-1), ClearCell FX, ISET, and Cellsearch) for the detection and identification of uveal melanoma cells (OMM 2.3 cell line). Tumor cells were seeded in RPMI medium and venous blood from healthy donors, and then processed similarly using these four platforms. Melan-A immunochemistry was performed to identify tumor cells, except when the Cellsearch device was used (automated identification). The mean overall recovery rates (with mean recovered cells) were 39.2% (19.92), 22.2% (11.31), 8.9% (4.85), and 1.1% (0.20) for the ISET, Vortex (VTX-1), ClearCell FX, and CellSearch platforms, respectively. Although paramount, the recovery rate is not sufficient to assess a CTC platform. Other parameters, such as the purpose for using a platform (diagnosis, genetics, drug sensitivity, or patient-derived xenograft models), reproducibility, purity, user-friendliness, cost-effectiveness, and ergonomics, should also be considered before they can be used in daily clinical practice and are discussed in this article.


Asunto(s)
Melanoma , Células Neoplásicas Circulantes , Neoplasias de la Úvea , Humanos , Células Neoplásicas Circulantes/patología , Reproducibilidad de los Resultados , Melanoma/patología , Neoplasias de la Úvea/diagnóstico , Neoplasias de la Úvea/patología , Biomarcadores de Tumor/metabolismo
4.
Cancers (Basel) ; 15(8)2023 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-37190299

RESUMEN

Ophthalmic malignancies include various rare neoplasms involving the conjunctiva, the uvea, or the periocular area. These tumors are characterized by their scarcity as well as their histological, and sometimes genetic, diversity. Uveal melanoma (UM) is the most common primary intraocular malignancy. UM raises three main challenges highlighting the specificity of ophthalmic malignancies. First, UM is a very rare malignancy with an estimated incidence of 6 cases per million inhabitants. Second, tissue biopsy is not routinely recommended due to the risk of extraocular dissemination. Third, UM is an aggressive cancer because it is estimated that about 50% of patients will experience metastatic spread without any curative treatment available at this stage. These challenges better explain the two main objectives in the creation of a dedicated UM biobank. First, collecting UM samples is essential due to tissue scarcity. Second, large-scale translational research programs based on stored human samples will help to better determine UM pathogenesis with the aim of identifying new biomarkers, allowing for early diagnosis and new targeted treatment modalities. Other periocular malignancies, such as conjunctival melanomas or orbital malignancies, also raise specific concerns. In this context, the number of biobanks worldwide dedicated to ocular malignancies is very limited. The aims of this article were (i) to describe the specific challenges raised by a dedicated ocular malignancy biobank, (ii) to report our experience in setting up such a biobank, and (iii) to discuss future perspectives in this field.

5.
Int J Mol Sci ; 24(4)2023 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-36834888

RESUMEN

As new SARS-CoV-2 variants emerge, there is an urgent need to increase the efficiency and availability of viral genome sequencing, notably to detect the lineage in samples with a low viral load. SARS-CoV-2 genome next-generation sequencing (NGS) was performed retrospectively in a single center on 175 positive samples from individuals. An automated workflow used the Ion AmpliSeq SARS-CoV-2 Insight Research Assay on the Genexus Sequencer. All samples were collected in the metropolitan area of the city of Nice (France) over a period of 32 weeks (from 19 July 2021 to 11 February 2022). In total, 76% of cases were identified with a low viral load (Ct ≥ 32, and ≤200 copies/µL). The NGS analysis was successful in 91% of cases, among which 57% of cases harbored the Delta variant, and 34% the Omicron BA.1.1 variant. Only 9% of cases had unreadable sequences. There was no significant difference in the viral load in patients infected with the Omicron variant compared to the Delta variant (Ct values, p = 0.0507; copy number, p = 0.252). We show that the NGS analysis of the SARS-CoV-2 genome provides reliable detection of the Delta and Omicron SARS-CoV-2 variants in low viral load samples.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Estudios Retrospectivos , Carga Viral , Secuenciación de Nucleótidos de Alto Rendimiento
7.
Cancers (Basel) ; 14(7)2022 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-35406511

RESUMEN

The histological distinction of lung neuroendocrine carcinoma, including small cell lung carcinoma (SCLC), large cell neuroendocrine carcinoma (LCNEC) and atypical carcinoid (AC), can be challenging in some cases, while bearing prognostic and therapeutic significance. To assist pathologists with the differentiation of histologic subtyping, we applied a deep learning classifier equipped with a convolutional neural network (CNN) to recognize lung neuroendocrine neoplasms. Slides of primary lung SCLC, LCNEC and AC were obtained from the Laboratory of Clinical and Experimental Pathology (University Hospital Nice, France). Three thoracic pathologists blindly established gold standard diagnoses. The HALO-AI module (Indica Labs, UK) trained with 18,752 image tiles extracted from 60 slides (SCLC = 20, LCNEC = 20, AC = 20 cases) was then tested on 90 slides (SCLC = 26, LCNEC = 22, AC = 13 and combined SCLC with LCNEC = 4 cases; NSCLC = 25 cases) by F1-score and accuracy. A HALO-AI correct area distribution (AD) cutoff of 50% or more was required to credit the CNN with the correct diagnosis. The tumor maps were false colored and displayed side by side to original hematoxylin and eosin slides with superimposed pathologist annotations. The trained HALO-AI yielded a mean F1-score of 0.99 (95% CI, 0.939-0.999) on the testing set. Our CNN model, providing further larger validation, has the potential to work side by side with the pathologist to accurately differentiate between the different lung neuroendocrine carcinoma in challenging cases.

8.
ERJ Open Res ; 7(4)2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34877351

RESUMEN

BACKGROUND: The current diagnostic standard for coronavirus disease 2019 (COVID-19) is reverse transcriptase-polymerase chain reaction (RT-PCR) testing with nasopharyngeal (NP) swabs. The invasiveness and need for trained personnel make the NP technique unsuited for repeated community-based mass screening. We developed a technique to collect saliva in a simple and easy way with the sponges that are usually used for tamponade of epistaxis. This study was carried out to validate the clinical performance of oral sponge (OS) sampling for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) testing. METHODS: Over a period of 22 weeks, we collected prospectively 409 paired NP and OS samples from consecutive subjects presenting to a public community-based free screening centre. Subjects were referred by their attending physician because of recent COVID-19 symptoms (n = 147) or by the contact tracing staff of the French public health insurance because they were considered as close contacts of a laboratory-confirmed COVID-19 case (n = 262). RESULTS: In symptomatic subjects, RT-PCR SARS-CoV-2 testing with OS showed a 96.5% (95% CI: 89.6-94.8) concordance with NP testing, and a 93.2% (95% CI: 89.1-97.3) sensitivity when using the IdyllaTM platform and a sensitivity of 76.3% (95% CI: 69.4-83.2) on the Synlab Barla laboratory platform. In close contacts the NP-OS concordance (93.8%, 95% CI: 90.9-96.7) and OS sensitivity (71.9%, 95% CI: 66.5-77.3) were slightly lower. CONCLUSION: These results strongly suggest that OS testing is a straightforward, low-cost and high-throughput sampling method that can be used for frequent RT-PCR testing of COVID-19 patients and mass screening of populations.

9.
Microbiol Spectr ; 9(3): e0099621, 2021 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-34756076

RESUMEN

Due to increased demand for testing, as well as restricted supply chain resources, testing for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection continues to face many hurdles. Pooling several samples has been proposed as an alternative approach to address these issues. We investigated the feasibility of pooling nasopharyngeal swab (NPS) or saliva samples for SARS-CoV-2 testing with a commercial assay (Idylla SARS-CoV-2 test; Biocartis). We evaluated the 10-pool and 20-pool approaches for 149 subjects, with 30 positive samples and 119 negative samples. The 10-pool approach had sensitivity of 78.95% (95% confidence interval [CI], 54.43% to 93.95%) and specificity of 100% (95% CI, 71.51% to 100%), whereas the 20-pool approach had sensitivity of 55.56% (95% CI, 21.20% to 86.30%) and specificity of 100% (95% CI, 25% to 100%). No significant difference was observed between the results obtained with pooled NPS and saliva samples. Given the rapidity, full automation, and practical advantages of the Idylla SARS-CoV-2 assay, pooling of 10 samples has the potential to significantly increase testing capacity for both NPS and saliva samples, with good sensitivity. IMPORTANCE To control outbreaks of coronavirus disease 2019 (COVID-19) and to avoid reagent shortages, testing strategies must be adapted and maintained for the foreseeable future. We analyzed the feasibility of pooling NPS and saliva samples for SARS-CoV-2 testing with the Idylla SARS-CoV-2 test, and we found that sensitivity was dependent on the pool size. The SARS-CoV-2 testing capacity with both NPS and saliva samples could be significantly expanded by pooling 10 samples; however, pooling 20 samples resulted in lower sensitivity.


Asunto(s)
Prueba de COVID-19/métodos , COVID-19/diagnóstico , Nasofaringe/virología , SARS-CoV-2/aislamiento & purificación , Saliva/virología , Manejo de Especímenes/métodos , Adulto , Pruebas Diagnósticas de Rutina , Femenino , Humanos , Masculino , Persona de Mediana Edad , Estudios Retrospectivos
10.
EBioMedicine ; 73: 103679, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34763205

RESUMEN

BACKGROUND: The immunogenicity of a two-dose mRNA COVID-19 vaccine regimen is low in kidney transplant (KT) recipients. Here, we provide a thorough assessment of the immunogenicity of a three-dose COVID-19 vaccine regimen in this population. METHODS: We performed a prospective longitudinal study in sixty-one KT recipients given three doses of the BNT162b2 COVID-19 vaccine. We performed semi-structured pharmacovigilance interviews and monitored donor-specific antibodies and kidney function. We compared levels of anti-spike IgG, pseudo-neutralization activity against vaccine homologous and heterologous variants, frequency of spike-specific interferon (IFN)-γ-secreting cells, and antigen-induced cytokine production 28 days after the second and third doses. FINDINGS: Reactions to vaccine were mild. One patient developed donor-specific anti-HLA antibodies after the second dose which could be explained by non-adherence to immunosuppressive therapy. Spike-specific IgG seroconversion raised from 44·3% (n=27) after the second dose to 62·3% (n=38) after the third dose (p<0·05). The mean level of spike-specific IgG increased from 1620 (SD, 3460) to 8772 (SD, 16733) AU/ml (p<0·0001). Serum neutralizing activity increased after the third dose for all variants of concern tested including the Delta variant (p<0·0001). The frequency of spike-specific IFN-γ-secreting cells increased from 19·9 (SD, 56·0) to 64·0 (SD, 76·8) cells/million PBMCs after the third dose (p<0·0001). A significant increase in IFN-γ responses was also observed in patients who remained seronegative after three doses (p<0·0001). INTERPRETATION: A third dose of the BNT162b2 vaccine increases both cross-variant neutralizing antibody and cellular responses in KT recipients with an acceptable tolerability profile. FUNDING: Nice University Hospital, University Cote d'Azur.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Vacuna BNT162/inmunología , COVID-19/inmunología , Trasplante de Riñón , Anciano , Anticuerpos Neutralizantes/sangre , Autoanticuerpos/sangre , Vacuna BNT162/administración & dosificación , Vacuna BNT162/efectos adversos , COVID-19/prevención & control , COVID-19/virología , Femenino , Rechazo de Injerto/prevención & control , Antígenos HLA/inmunología , Humanos , Inmunoglobulina G/sangre , Inmunoglobulina G/inmunología , Inmunosupresores/uso terapéutico , Interferón gamma/metabolismo , Leucocitos Mononucleares/citología , Leucocitos Mononucleares/metabolismo , Estudios Longitudinales , Masculino , Persona de Mediana Edad , Factores de Riesgo , SARS-CoV-2/inmunología , SARS-CoV-2/aislamiento & purificación , SARS-CoV-2/metabolismo , Glicoproteína de la Espiga del Coronavirus/inmunología
11.
Ann Transl Med ; 9(11): 921, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34350236

RESUMEN

BACKGROUND: Management of large numbers of reverse transcriptase-polymerase chain reactions (RT-PCR) for diagnosis of coronavirus 2019 disease (COVID-19) requires robust infrastructures, located in dedicated premises with a high standard of biosafety procedures, and well-trained personnel. The handling of a "run-of-river sample" to obtain rapid reporting of results is challenging. METHODS: We studied the clinical performance of the Idylla™ SARS-CoV-2 Test (index test) on a platform capable of fully automated nucleic acid testing including extraction, amplification, and detection in a single-use cartridge to establish the diagnosis of COVID-19. The study was conducted on a prospective cohort of 112 volunteers with recent symptoms and an unknown SARS-CoV-2 status who came to free screening centers of the Nice metropolitan area. All subjects underwent bilateral nasopharyngeal sampling. One sample was processed using the index test, the other using the standard of care RT-PCR. Samples were treated blind. RESULTS: Most of the participants (70%) were sampled within 4 days of symptom onset. Forty-five (40.2%) were positive for COVID-19. No clinical symptoms were distinguished between SARS-CoV-2 RT-PCR positive and negative subjects except anosmia and dysgeusia. Positive and negative agreement between the index and the standard of care test was 100%. CONCLUSIONS: The Idylla™ SARS-CoV-2 Test is very sensitive, specific, rapid and easy to use in a near-patient RT-PCR approach to distinguish between symptomatic SARS-CoV-2 positive and negative patients in selected settings.

12.
Ann Transl Med ; 9(11): 922, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34350237

RESUMEN

BACKGROUND: Detection of genomic rearrangements, like anaplastic lymphoma kinase (ALK) fusions, is a pivotal requirement in non-small cell lung cancer (NSCLC) for the initiation of a targeted treatment. While tissue testing remains the gold standard, detection of these alterations using liquid biopsies is an unmet need. To enable the detection of ALK rearrangements from circulating-free RNA (cfRNA) from NSCLC patients, we have evaluated a novel reverse transcription PCR (RT-PCR) based assay. METHODS: Sixty-six patients with advanced stage NSCLC were included in the study. ALK status was determined by immunohistochemistry (IHC) and/or FISH on tissue sections. For the detection of ALK rearrangements from 2ml plasma collected in EDTA or Streck BCT DNA tubes, cfRNA was extracted using a prototype cfRNA sample preparation method and tested by a novel multiplex ALK/RET RT-PCR assay (Roche). RESULTS: Of the forty-two patients with an ALK rearrangement, 30 (71%) were included at baseline. In 10 of the baseline patients, an ALK rearrangement was detected by RT-PCR [baseline sensitivity 33.33% (95% CI: 17.29-52.81%)]. All 24 negative ALK IHC/FISH-negative patients were negative using the RT-PCR based assay (specificity =100%). CONCLUSIONS: The prototype Roche ALK/RET RT-PCR assay was able to detect ALK fusion transcripts in the plasma of NSCLC patients at baseline as well as at disease progression with limited sensitivity but high specificity. Consequently, this assay could potentially be considered to select patients for an ALK-targeting therapy when tissue samples are lacking.

13.
J Thorac Oncol ; 16(5): 807-816, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33545389

RESUMEN

INTRODUCTION: Patients with advanced-stage NSCLC whose tumors harbor an ALK gene rearrangement benefit from treatment with multiple ALK inhibitors (ALKi). Approximately 30% of tumor biopsy samples contain insufficient tissue for successful ALK molecular characterization. This study evaluated the added value of analyzing circulating tumor cells (CTCs) as a surrogate to ALK tissue analysis and as a function of the response to ALKi. METHODS: We conducted a multicenter, prospective observational study (NCT02372448) of 203 patients with stage IIIB/IV NSCLC across nine French centers, of whom 81 were ALK positive (immunohistochemistry or fluorescence in situ hybridization [FISH]) and 122 ALK negative on paraffin-embedded tissue specimens. Blood samples were collected at baseline and at 6 and 12 weeks after ALKi initiation or at disease progression. ALK gene rearrangement was evaluated with CTCs using immunocytochemistry and FISH analysis after enrichment using a filtration method. RESULTS: At baseline, there was a high concordance between the detection of an ALK rearrangement in the tumor tissue and in CTCs as determined by immunocytochemistry (sensitivity, 94.4%; specificity 89.4%). The performance was lower for the FISH analysis (sensitivity, 35.6%; specificity, 56.9%). No significant association between the baseline levels or the dynamic change of CTCs and overall survival (hazard ratio = 0.59, 95% confidence interval: 0.24-1.5, p = 0.244) or progression-free survival (hazard ratio = 0.84, 95% confidence interval: 0.44-1.6, p = 0.591) was observed in the patients with ALK-positive NSCLC. CONCLUSIONS: CTCs can be used as a complementary tool to a tissue biopsy for the detection of ALK rearrangements. Longitudinal analyses of CTCs revealed promise for real-time patient monitoring and improved delivery of molecularly guided therapy in this population.


Asunto(s)
Neoplasias Pulmonares , Células Neoplásicas Circulantes , Quinasa de Linfoma Anaplásico/genética , Reordenamiento Génico , Humanos , Hibridación Fluorescente in Situ , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Estudios Prospectivos , Proteínas Tirosina Quinasas Receptoras/genética
14.
Front Med (Lausanne) ; 8: 730577, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35087842

RESUMEN

Introduction: Aside from the reverse transcription-PCR tests for the diagnosis of the COVID-19 in routine clinical care and population-scale screening, there is an urgent need to increase the number and the efficiency for full viral genome sequencing to detect the variants of SARS-CoV-2. SARS-CoV-2 variants assessment should be easily, rapidly, and routinely available in any academic hospital. Materials and Methods: SARS-CoV-2 full genome sequencing was performed retrospectively in a single laboratory (LPCE, Louis Pasteur Hospital, Nice, France) in 103 SARS-CoV-2 positive individuals. An automated workflow used the Ion Ampliseq SARS-CoV-2 panel on the Genexus Sequencer. The analyses were made from nasopharyngeal swab (NSP) (n = 64) and/or saliva (n = 39) samples. All samples were collected in the metropolitan area of the Nice city (France) from September 2020 to March 2021. Results: The mean turnaround time between RNA extraction and result reports was 30 h for each run of 15 samples. A strong correlation was noted for the results obtained between NSP and saliva paired samples, regardless of low viral load and high (>28) Ct values. After repeated sequencing runs, complete failure of obtaining a valid sequencing result was observed in 4% of samples. Besides the European strain (B.1.160), various variants were identified, including one variant of concern (B.1.1.7), and different variants under monitoring. Discussion: Our data highlight the current feasibility of developing the SARS-CoV-2 next-generation sequencing approach in a single hospital center. Moreover, these data showed that using the Ion Ampliseq SARS-CoV-2 Assay, the SARS-CoV-2 genome sequencing is rapid and efficient not only in NSP but also in saliva samples with a low viral load. The advantages and limitations of this setup are discussed.

15.
Biopreserv Biobank ; 18(6): 517-524, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33175565

RESUMEN

In only a few months after its inception, the COVID-19 pandemic lead to the death of hundreds of thousands of patients and to the infection of millions of people on most continents, mostly in the United States and in Europe. During this crisis, it was demonstrated that a better understanding of the pathogenicity, virulence, and contagiousness of SARS-CoV-2, all of which were initially underestimated, was urgently needed. The development of diagnostic tests to identify SARS-CoV-2 or to detect anti-SARS-CoV2 antibodies in blood, of vaccines, and of preventive and curative treatments has been relying on intense activity of scientists in academia and industry. It is noteworthy that these scientists depend on the use of high-quality biological samples taken from positive COVID-19 patients in a manner that preserves their integrity. Given this unique and emergent situation, it was necessary to urgently establish biological collections clinically annotated for immediate development of clinical and translational research projects focusing on COVID-19 biological aspects. It is in this very specific context that biobanks must rapidly adapt their infrastructure and/or operational capacity to fulfill new critical needs. We report the establishment of a biobank dedicated to the collection of blood-derived products (plasma, serum, and leukocytes) from COVID-19 patients hospitalized in the Nice Pasteur Hospital (Nice, France).


Asunto(s)
Bancos de Muestras Biológicas , COVID-19/sangre , COVID-19/epidemiología , SARS-CoV-2/metabolismo , Investigación Biomédica Traslacional , Femenino , Francia , Humanos , Masculino
16.
Clin Lung Cancer ; 21(1): 56-65.e8, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31519454

RESUMEN

BACKGROUND: The introduction of liquid biopsy using PCR-based assays into routine practice has had a strong impact on the treatment of EGFR-mutated lung adenocarcinoma and is now commonly used for routine testing of EGFR mutations in certain clinical settings. To assess whether the claimed benefits of PCR-based assays hold true in daily practice at a multicenter clinical institution, we assessed how treatment decisions are affected by PCR-based assays for the analysis of EGFR mutations from plasma samples in a centralized laboratory (LPCE, Nice, France). PATIENTS AND METHODS: A total of 345 samples were analyzed using the US Food and Drug Administration-approved Cobas EGFR Mutation Test v2 and 103 using the Therascreen EGFR Plasma RGQ PCR Kit over 3 years (395 samples from 324 patients). Eleven plasma samples were validated independently using Cobas at 3 institutions, and 130 samples were analyzed using Stilla digital PCR. Clinical data were collected for 175 (54%) of 324 patients. RESULTS: Cobas was superior to the Therascreen assay and demonstrated 100% reproducibility. Digital PCR showed only 48%, 83%, and 58% concordance with Cobas for exon 19 deletions, L858R mutations, and T790M mutations, respectively. Liquid biopsies helped inform and change treatment when resistance occurred and enabled the detection of EGFR mutations in patients when biopsy tissue results were unavailable. CONCLUSION: PCR-based assays are a fast and convenient test, allowing the detection of primary and secondary EGFR mutations from plasma. Cobas proved to be a reliable test, whereas digital PCR produced too many inconclusive results to be currently recommended as a principal testing device.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/diagnóstico , Técnicas de Laboratorio Clínico/normas , Análisis Mutacional de ADN/métodos , Neoplasias Pulmonares/diagnóstico , Mutación , Adulto , Anciano , Anciano de 80 o más Años , Carcinoma de Pulmón de Células no Pequeñas/sangre , Carcinoma de Pulmón de Células no Pequeñas/genética , Receptores ErbB/genética , Femenino , Francia , Humanos , Biopsia Líquida , Neoplasias Pulmonares/sangre , Neoplasias Pulmonares/genética , Masculino , Persona de Mediana Edad , Reproducibilidad de los Resultados
17.
Oncotarget ; 8(16): 26112-26121, 2017 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-28212540

RESUMEN

Given the difficulty in obtaining adequate tissue in NSCLC, we investigated the utility of circulating tumor cells (CTCs) for MET status assessment in NSCLC patients. We used two platforms for CTC capture, and assessed MET expression in CTCs and matched-bronchial biopsies in patients with advanced-stage III/IV lung adenocarcinoma. Baseline peripheral blood was collected from 256 advanced-stage III/IV NSCLC patients from Genentech clinical trials, and from 106 patients with advanced-stage III/IV lung adenocarcinoma treated at the Department of Pneumology, Pasteur Hospital, Nice. CTCs were enriched using CellSearch (Genentech), or ISET technologies (Pasteur Hospital). MET expression was evaluated by immunofluorescence on CellSearch, and by immunocytochemistry on ISET-enriched CTCs and on matched FFPE tissue sections (Pasteur Hospital). CTCs were detected in 83 of 256 (32%) patients evaluated on CellSearch, with 30 samples (12%) exhibiting ≥ 5 CTCs/7.5 ml blood. On ISET, CTC were observed in 80 of 106 patients (75%), and 79 patients (75%) exhibited ≥ 5 CTCs/4 ml blood. MET expression on ISET CTCs was positive in 72% of cases, and the MET expression on matched-patient tissue was positive in 65% patients using the Onartuzumab IHC scoring algorithm (93% concordance). Quantification of MET expression using H-scores showed strong correlation between MET expression in tissue and CTCs (Spearman correlation, 0.93). MET status in CTCs isolated on ISET filters from blood samples of advanced-stage NSCLC patients correlated strongly with MET status in tumor tissue, illustrating the potential for using CTCs as a non-invasive, real-time biopsy to determine MET status of patients entering clinical trials.


Asunto(s)
Biomarcadores de Tumor , Expresión Génica , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Células Neoplásicas Circulantes/metabolismo , Células Neoplásicas Circulantes/patología , Proteínas Proto-Oncogénicas c-met/genética , Adulto , Anciano , Anciano de 80 o más Años , Recuento de Células , Femenino , Humanos , Inmunohistoquímica , Neoplasias Pulmonares/mortalidad , Masculino , Persona de Mediana Edad , Clasificación del Tumor , Metástasis de la Neoplasia , Estadificación de Neoplasias , Proteínas Proto-Oncogénicas c-met/metabolismo , Carga Tumoral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA