Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
1.
Cell Death Dis ; 15(2): 169, 2024 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-38395995

RESUMEN

Phosphodiesterase 2A (Pde2A) is a dual-specific PDE that breaks down both cAMP and cGMP cyclic nucleotides. We recently highlighted a direct relationship between Pde2A impairment, a consequent increase of cAMP, and the appearance of mouse congenital heart defects (CHDs). Here we aimed to characterize the pathways involved in the development of CHDs and in their prevention by pharmacological approaches targeting cAMP and cGMP signaling. Transcriptome analysis revealed a modulation of more than 500 genes affecting biological processes involved in the immune system, cardiomyocyte development and contractility, angiogenesis, transcription, and oxidative stress in hearts from Pde2A-/- embryos. Metoprolol and H89 pharmacological administration prevented heart dilatation and hypertabeculation in Pde2A-/- embryos. Metoprolol was also able to partially impede heart septum defect and oxidative stress at tissue and molecular levels. Amelioration of cardiac defects was also observed by using the antioxidant NAC, indicating oxidative stress as one of the molecular mechanisms underpinning the CHDs. In addition, Sildenafil treatment recovered cardiac defects suggesting the requirement of cAMP/cGMP nucleotides balance for the correct heart development.


Asunto(s)
Fosfodiesterasas de Nucleótidos Cíclicos Tipo 2 , Cardiopatías Congénitas , Ratones , Animales , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 2/genética , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 2/metabolismo , Metoprolol , Transducción de Señal , GMP Cíclico/metabolismo , Cardiopatías Congénitas/genética , Cardiopatías Congénitas/prevención & control , Estrés Oxidativo
2.
Cell Death Dis ; 15(2): 113, 2024 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-38321003

RESUMEN

Understanding the mechanisms of breast cancer cell communication underlying cell spreading and metastasis formation is fundamental for developing new therapies. ID4 is a proto-oncogene overexpressed in the basal-like subtype of triple-negative breast cancer (TNBC), where it promotes angiogenesis, cancer stem cells, and BRACA1 misfunction. Here, we show that ID4 expression in BC cells correlates with the activation of motility pathways and promotes the production of VEGFA, which stimulates the interaction of VEGFR2 and integrin ß3 in a paracrine fashion. This interaction induces the downstream focal adhesion pathway favoring migration, invasion, and stress fiber formation. Furthermore, ID4/ VEGFA/ VEGFR2/ integrin ß3 signaling stimulates the nuclear translocation and activation of the Hippo pathway member's YAP and TAZ, two critical executors for cancer initiation and progression. Our study provides new insights into the oncogenic roles of ID4 in tumor cell migration and YAP/TAZ pathway activation, suggesting VEGFA/ VEGFR2/ integrin ß3 axis as a potential target for BC treatment.


Asunto(s)
Neoplasias de la Mama , Integrina beta3 , Humanos , Femenino , Integrina beta3/metabolismo , Línea Celular Tumoral , Transducción de Señal , Vía de Señalización Hippo , Factor A de Crecimiento Endotelial Vascular , Proteínas Inhibidoras de la Diferenciación
4.
J Exp Clin Cancer Res ; 42(1): 223, 2023 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-37653435

RESUMEN

BACKGROUND: Acute myeloid leukemia (AML) patients bearing the ITD mutation in the tyrosine kinase receptor FLT3 (FLT3-ITD) present a poor prognosis and a high risk of relapse. FLT3-ITD is retained in the endoplasmic reticulum (ER) and generates intrinsic proteotoxic stress. We devised a strategy based on proteotoxic stress, generated by the combination of low doses of the differentiating agent retinoic acid (R), the proteasome inhibitor bortezomib (B), and the oxidative stress inducer arsenic trioxide (A). METHODS: We treated FLT3-ITD+ AML cells with low doses of the aforementioned drugs, used alone or in combinations and we investigated the induction of ER and oxidative stress. We then performed the same experiments in an in vitro co-culture system of FLT3-ITD+ AML cells and bone marrow stromal cells (BMSCs) to assess the protective role of the niche on AML blasts. Eventually, we tested the combination of drugs in an orthotopic murine model of human AML. RESULTS: The combination RBA exerts strong cytotoxic activity on FLT3-ITD+ AML cell lines and primary blasts isolated from patients, due to ER homeostasis imbalance and generation of oxidative stress. AML cells become completely resistant to the combination RBA when treated in co-culture with BMSCs. Nonetheless, we could overcome such protective effects by using high doses of ascorbic acid (Vitamin C) as an adjuvant. Importantly, the combination RBA plus ascorbic acid significantly prolongs the life span of a murine model of human FLT3-ITD+ AML without toxic effects. Furthermore, we show for the first time that the cross-talk between AML and BMSCs upon treatment involves disruption of the actin cytoskeleton and the actin cap, increased thickness of the nuclei, and relocalization of the transcriptional co-regulator YAP in the cytosol of the BMSCs. CONCLUSIONS: Our findings strengthen our previous work indicating induction of proteotoxic stress as a possible strategy in FLT3-ITD+ AML therapy and open to the possibility of identifying new therapeutic targets in the crosstalk between AML and BMSCs, involving mechanotransduction and YAP signaling.


Asunto(s)
Citoprotección , Tretinoina , Humanos , Animales , Ratones , Tretinoina/farmacología , Modelos Animales de Enfermedad , Mecanotransducción Celular , Estrés Proteotóxico , Ácido Ascórbico , Muerte Celular
5.
Mol Aspects Med ; 93: 101205, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37515939

RESUMEN

Anthracyclines have been important and effective treatments against a number of cancers since their discovery. However, their use in therapy has been complicated by severe side effects and toxicity that occur during or after treatment, including cardiotoxicity. The mode of action of anthracyclines is complex, with several mechanisms proposed. It is possible that their high toxicity is due to the large set of processes involved in anthracycline action. The development of resistance is a major barrier to successful treatment when using anthracyclines. This resistance is based on a series of mechanisms that have been studied and addressed in recent years. This work provides an overview of the anthracyclines used in cancer therapy. It discusses their mechanisms of activity, toxicity, and chemoresistance, as well as the approaches used to improve their activity, decrease their toxicity, and overcome resistance.


Asunto(s)
Antraciclinas , Neoplasias , Humanos , Antraciclinas/farmacología , Antraciclinas/uso terapéutico , Resistencia a Antineoplásicos/genética , Doxorrubicina/farmacología , Doxorrubicina/uso terapéutico , Antibióticos Antineoplásicos/efectos adversos , Neoplasias/tratamiento farmacológico
6.
Cell Mol Life Sci ; 80(8): 202, 2023 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-37442828

RESUMEN

The epidermal growth factor receptor (EGFR) is one of the main tumor drivers and is an important therapeutic target for many cancers. Calcium is important in EGFR signaling pathways. Sorcin is one of the most important calcium sensor proteins, overexpressed in many tumors, that promotes cell proliferation, migration, invasion, epithelial-to-mesenchymal transition, malignant progression and resistance to chemotherapeutic drugs. The present work elucidates a functional mechanism that links calcium homeostasis to EGFR signaling in cancer. Sorcin and EGFR expression are significantly correlated and associated with reduced overall survival in cancer patients. Mechanistically, Sorcin directly binds EGFR protein in a calcium-dependent fashion and regulates calcium (dys)homeostasis linked to EGF-dependent EGFR signaling. Moreover, Sorcin controls EGFR proteostasis and signaling and increases its phosphorylation, leading to increased EGF-dependent migration and invasion. Of note, silencing of Sorcin cooperates with EGFR inhibitors in the regulation of migration, highlighting calcium signaling pathway as an exploitable target to enhance the effectiveness of EGFR-targeting therapies.


Asunto(s)
Factor de Crecimiento Epidérmico , Neoplasias , Humanos , Factor de Crecimiento Epidérmico/farmacología , Factor de Crecimiento Epidérmico/metabolismo , Calcio , Transducción de Señal , Receptores ErbB/genética , Receptores ErbB/metabolismo , Línea Celular Tumoral , Movimiento Celular
7.
Cell Mol Life Sci ; 80(4): 111, 2023 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-37002363

RESUMEN

Transmembrane semaphorins are signaling molecules, controlling axonal wiring and embryo development, which are increasingly implicated in human diseases. Semaphorin 6C (Sema6C) is a poorly understood family member and its functional role is still unclear. Upon targeting Sema6C expression in a range of cancer cells, we observed dramatic growth suppression, decreased ERK phosphorylation, upregulation of cell cycle inhibitor proteins p21, p27 and p53, and the onset of cell senescence, associated with activation of autophagy. These data are consistent with a fundamental requirement for Sema6C to support viability and growth in cancer cells. Mechanistically, we unveiled a novel signaling pathway elicited by Sema6C, and dependent on its intracellular domain, mediated by tyrosine kinases c-Abl and Focal Adhesion Kinase (FAK). Sema6C was found in complex with c-Abl, and induced its phosphorylation, which in turn led to FAK activation, independent of cell-matrix adhesion. Sema6C-induced FAK activity was furthermore responsible for increased nuclear localization of YAP transcriptional regulator. Moreover, Sema6C conferred YAP signaling-dependent long-term cancer cell survival upon nutrient deprivation. In conclusion, our findings demonstrate that Sema6C elicits a cancer promoting-signaling pathway sustaining cell viability and self-renewal, independent of growth factors and nutrients availability.


Asunto(s)
Neoplasias , Transducción de Señal , Humanos , Proteína-Tirosina Quinasas de Adhesión Focal/metabolismo , Supervivencia Celular , Quinasa 1 de Adhesión Focal/genética , Quinasa 1 de Adhesión Focal/metabolismo , Fosforilación , Proteínas de Ciclo Celular/metabolismo , Neoplasias/genética
9.
Int J Mol Sci ; 23(17)2022 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-36076963

RESUMEN

Gliomas are the most common primary malignant brain tumors. Glioblastoma, IDH-wildtype (GBM, CNS WHO grade 4) is the most aggressive form of glioma and is characterized by extensive hypoxic areas that strongly correlate with tumor malignancy. Hypoxia promotes several processes, including stemness, migration, invasion, angiogenesis, and radio- and chemoresistance, that have direct impacts on treatment failure. Thus, there is still an increasing need to identify novel targets to limit GBM relapse. Polysialic acid (PSA) is a carbohydrate composed of a linear polymer of α2,8-linked sialic acids, primarily attached to the Neural Cell Adhesion Molecule (NCAM). It is considered an oncodevelopmental antigen that is re-expressed in various tumors. High levels of PSA-NCAM are associated with high-grade and poorly differentiated tumors. Here, we investigated the effect of PSA inhibition in GBM cells under low oxygen concentrations. Our main results highlight the way in which hypoxia stimulates polysialylation in U87-MG cells and in a GBM primary culture. By lowering PSA levels with the sialic acid analog, F-NANA, we also inhibited GBM cell migration and interfered with their differentiation influenced by the hypoxic microenvironment. Our findings suggest that PSA may represent a possible molecular target for the development of alternative pharmacological strategies to manage a devastating tumor like GBM.


Asunto(s)
Glioblastoma , Neuroblastoma , Glioblastoma/metabolismo , Humanos , Hipoxia/metabolismo , Recurrencia Local de Neoplasia , Moléculas de Adhesión de Célula Nerviosa/genética , Moléculas de Adhesión de Célula Nerviosa/metabolismo , Neuroblastoma/metabolismo , Ácidos Siálicos/metabolismo , Microambiente Tumoral
10.
Noncoding RNA ; 8(4)2022 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-35893233

RESUMEN

Acute myeloid leukemia (AML) is a hematological malignancy originating from defective hematopoietic stem cells in the bone marrow. In spite of the recent approval of several molecular targeted therapies for AML treatment, disease recurrence remains an issue. Interestingly, increasing evidence has pointed out the relevance of bone marrow (BM) niche remodeling during leukemia onset and progression. Complex crosstalk between AML cells and microenvironment components shapes the leukemic BM niche, consequently affecting therapy responsiveness. Notably, circular RNAs are a new class of RNAs found to be relevant in AML progression and chemoresistance. In this review, we provided an overview of AML-driven niche remodeling. In particular, we analyzed the role of circRNAs and their possible contribution to cell-cell communication within the leukemic BM microenvironment. Understanding these mechanisms will help develop a more effective treatment for AML.

11.
Drug Resist Updat ; 64: 100853, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35870226

RESUMEN

Protein biogenesis, maturation and degradation are tightly regulated processes that are governed by a complex network of signaling pathways. The endoplasmic reticulum (ER) is responsible for biosynthesis and maturation of secretory proteins. Circumstances that alter cellular protein homeostasis, determine accumulation of misfolded and unfolded proteins in the ER, a condition defined as ER stress. In case of stress, the ER activates an adaptive response called unfolded protein response (UPR), a series of pathways of major relevance for cancer biology. The UPR plays a preeminent role in adaptation of tumor cells to the harsh conditions that they experience, due to high rates of proliferation, metabolic abnormalities and hostile environment scarce in oxygen and nutrients. Furthermore, the UPR is among the main adaptive cell stress responses contributing to the development of resistance to drugs and chemotherapy. Clinical management of Acute Myeloid Leukemia (AML) has improved significantly in the last decade, thanks to development of molecular targeted therapies. However, the emergence of treatment-resistant clones renders the rate of AML cure dismal. Moreover, different cell populations that constitute the bone marrow niche recently emerged as a main determinant leading to drug resistance. Herein we summarize the most relevant literature regarding the role played by the UPR in expansion of AML and ability to develop drug resistance and we discuss different possible modalities to overturn this adaptive response against leukemia. To this aim, we also describe the interconnection of the UPR with other cellular stress responses regulating protein homeostasis. Finally, we review the newest findings about the crosstalk between AML cells and cells of the bone marrow niche, under physiological conditions and in response to therapies, discussing in particular the importance of the niche in supporting survival of AML cells by favoring protein homeostasis.


Asunto(s)
Leucemia Mieloide Aguda , Respuesta de Proteína Desplegada , Retículo Endoplásmico/metabolismo , Retículo Endoplásmico/patología , Homeostasis , Humanos , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/genética , Oxígeno/metabolismo , Resultado del Tratamiento
12.
Commun Biol ; 5(1): 598, 2022 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-35710947

RESUMEN

Vascular Endothelial Growth Factor A (VEGFA) is the most commonly expressed angiogenic growth factor in solid tumors and is generated as multiple isoforms through alternative mRNA splicing. Here, we show that lncRNA MALAT1 (metastasis-associated lung adenocarcinoma transcript 1) and ID4 (inhibitor of DNA-binding 4) protein, previously referred to as regulators of linear isoforms of VEGFA, induce back-splicing of VEGFA exon 7, producing circular RNA circ_0076611. Circ_0076611 is detectable in triple-negative breast cancer (TNBC) cells and tissues, in exosomes released from TNBC cells and in the serum of breast cancer patients. Circ_0076611 interacts with a variety of proliferation-related transcripts, included MYC and VEGFA mRNAs, and increases cell proliferation and migration of TNBC cells. Mechanistically, circ_0076611 favors the expression of its target mRNAs by facilitating their interaction with components of the translation initiation machinery. These results add further complexity to the multiple VEGFA isoforms expressed in cancer cells and highlight the relevance of post-transcriptional regulation of VEGFA expression in TNBC cells.


Asunto(s)
MicroARNs , ARN Largo no Codificante , Neoplasias de la Mama Triple Negativas , Humanos , MicroARNs/genética , Isoformas de Proteínas/genética , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Neoplasias de la Mama Triple Negativas/metabolismo , Factor A de Crecimiento Endotelial Vascular/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo
13.
Front Immunol ; 13: 867181, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35529877

RESUMEN

Thymic Epithelial Tumors (TETs) arise from epithelial cells of the thymus and are very rare neoplasms comprising Thymoma, Thymic carcinoma, and Thymic Neuroendocrine tumors that still require in-depth molecular characterization. Long non-coding RNAs (lncRNAs) are emerging as relevant gene expression modulators involved in the deregulation of several networks in almost all types of human cancer, including TETs. LncRNAs act at different control levels in the regulation of gene expression, from transcription to translation, and modulate several pathways relevant to cell fate determination under normal and pathological conditions. The activity of lncRNAs is strongly dependent on their expression, localization, and post-transcriptional modifications. Starting from our recently published studies, this review focuses on the involvement of lncRNAs in the acquisition of malignant traits by neoplastic thymic epithelial cells, and describes the possible use of these molecules as targets for the design of novel therapeutic approaches specific for TET. Furthermore, the involvement of lncRNAs in myasthenia gravis (MG)-related thymoma, which is still under investigation, is discussed.


Asunto(s)
Neoplasias Glandulares y Epiteliales , ARN Largo no Codificante , Timoma , Neoplasias del Timo , Células Epiteliales/metabolismo , Humanos , Neoplasias Glandulares y Epiteliales/genética , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Timoma/genética , Timoma/patología , Neoplasias del Timo/genética , Neoplasias del Timo/patología
15.
BMC Mol Cell Biol ; 23(1): 13, 2022 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-35255831

RESUMEN

BACKGROUND: The nucleolus is a subnuclear, non-membrane bound domain that is the hub of ribosome biogenesis and a critical regulator of cell homeostasis. Rapid growth and division of cells in tumors are correlated with intensive nucleolar metabolism as a response to oncogenic factors overexpression. Several members of the Epidermal Growth Factor Receptor (EGFR) family, have been identified in the nucleus and nucleolus of many cancer cells, but their function in these compartments remains unexplored. RESULTS: We focused our research on the nucleolar function that a specific member of EGFR family, the ErbB3 receptor, plays in glioblastoma, a tumor without effective therapies. Here, Neuregulin 1 mediated proliferative stimuli, promotes ErbB3 relocalization from the nucleolus to the cytoplasm and increases pre-rRNA synthesis. Instead ErbB3 silencing or nucleolar stress reduce cell proliferation and affect cell cycle progression. CONCLUSIONS: These data point to the existence of an ErbB3-mediated non canonical pathway that glioblastoma cells use to control ribosomes synthesis and cell proliferation. These results highlight the potential role for the nucleolar ErbB3 receptor, as a new target in glioblastoma.


Asunto(s)
Glioblastoma , Nucléolo Celular/genética , Nucléolo Celular/metabolismo , Proliferación Celular , Glioblastoma/metabolismo , Humanos , Receptor ErbB-3/genética , Receptor ErbB-3/metabolismo , Transcripción Genética
16.
Noncoding RNA ; 8(1)2022 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-35202089

RESUMEN

Non-coding RNAs (ncRNAs) play a pivotal role in regulating the tumor microenvironment (TME) by controlling gene expression at multiple levels. In tumors, ncRNAs can mediate the crosstalk between cancer cells and other cells in the TME, such as immune cells, stromal cells, and endothelial cells, influencing tumor development and progression. Tumor-associated macrophages (TAMs) are among the most abundant inflammatory cells infiltrating solid cancers that promote tumorigenesis, and their infiltration correlates with a poor prognosis in many tumors. Cancer cells produce different ncRNAs that orchestrate TAM recruitment and polarization toward a tumor-promoting phenotype. Tumor-reprogrammed macrophages shape the TME by promoting angiogenesis and tissue remodeling, and suppressing the anti-tumor activity of adaptive immune cells. TAMs can also produce ncRNA molecules that boost cancer cell proliferation and direct their phenotype and metabolic changes facilitating cancer progression and metastasis. This review will focus on the crosstalk between cancer cells and TAMs mediated by microRNAs and long non-coding RNAs during breast cancer (BC) initiation and progression.

18.
Cells ; 10(10)2021 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-34685576

RESUMEN

BACKGROUND AND AIM: Diarrhea, abdominal pain, and bloating are frequent in irritable bowel syndrome (IBS)-like disorders, although little is known about their intestinal ultrastructural alterations. The aim of the present study was to study duodenal biopsies from IBS-like patients to find ultrastructural alterations. MATERIALS AND METHODS: Study design: descriptive comparative pilot study. Thirty outpatients (9 male and 21 female; median age 37.7 years; range, 20 to 65 years) complaining of IBS-like symptoms were enrolled between January 2015 to May 2019 and were divided into 6 groups, each equally consisting of 5 patients: (A) untreated celiac disease (uCD); (B) treated celiac disease (tCD); (C) wheat allergy (WA); (D) Non-celiac gluten sensitivity (NCGS); (E) Nickel allergic contact mucositis (Ni ACM); (F) controls affected by GERD. Transmission electron microscopy (TEM) morphological characteristics were: microvilli length, intermicrovillar distance, junctional complexes (JC) gap width, autophagic bodies, apoptosis, altered mitochondria, lipid/chylomicron droplets, and mast cells. Regarding JC, we focused on tight junctions (TJ), adherens junctions (AJ), and desmosomes. RESULTS: Major alterations in microvilli length and intermicrovillar distance have been observed in the subjects affected by uCD. Microvilli of tCD patients showed marked recovery after adequate GFD, although not comparable to controls. Intermediate microvillar alterations were instead observed in NCGS and Ni ACM, while characteristics of WA subjects appeared more similar to tCD. Regarding JC, TJ did not show significant differences between all groups studied, including controls. The AJ were significantly more dilated in all groups compared to controls, while no significant differences were found between the pathological groups. The distance between desmosomes was greater in uCD, NCGS, and Ni ACM than in tCD, WA, and controls. Finally, intracellular alterations have been detected in most of the groups studied although they seemed more unspecific. CONCLUSIONS: TEM analysis confirmed damages to the intestinal barrier and defense mechanisms by enterocytes in IBS-like patients, probably linked to low-grade inflammation or adverse reactions triggered by food allergens, heavy metals, or other unknown. On the other hand, our study needs confirmation and further investigations with larger populations to facilitate diagnosis, therapy, and prevention of IBS-like disorders in the future.


Asunto(s)
Biopsia/métodos , Duodeno/cirugía , Duodeno/ultraestructura , Síndrome del Colon Irritable/complicaciones , Adulto , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Proyectos Piloto , Adulto Joven
19.
Clin Epigenetics ; 13(1): 173, 2021 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-34530916

RESUMEN

BACKGROUND: Thymic epithelial tumors (TETs) are rare neoplasms, originating from epithelial thymic cells. The oncogenic potential of these rare neoplasms is still largely undefined, and a deeper molecular characterization could result in a relevant advance in their management, greatly improving diagnosis, prognosis and treatment choice. Deregulation of N6-methyladenosine (m6A) RNA modification, catalyzed by the METTL3/METTL14 methyltransferase complex, is emerging as a relevant event in cell differentiation and carcinogenesis. Various studies have reported that altered expression of METTL3 is associated with an aggressive malignant phenotype and favors migration and invasiveness, but its role in Thymic Tumors remains unknown. RESULTS: In this study, we characterized that METTL3 contributes to Thymic Epithelial Tumor phenotype. We evidenced that METTL3 is overexpressed in tumor tissue compared to normal counterpart. Silencing of METTL3 expression in thymic carcinoma cells results in reduced cell proliferation and overall translation rate. Of note, METTL3 is responsible for the induction of c-MYC expression in TET cells. Specifically, high expression of c-MYC protein is enabled by lncRNA MALAT1, which is methylated and delocalized by METTL3. Interestingly, blocking of c-MYC by using JQ1 inhibitor cooperates with METTL3 depletion in the inhibition of proliferation and induction of cell death. CONCLUSION: This study highlighted METTL3 as a tumor promoter in Thymic tumors and c-MYC as a promising target to be exploited for the treatment of TET.


Asunto(s)
Metilación de ADN/genética , Regulación Neoplásica de la Expresión Génica/genética , Metiltransferasas/genética , Neoplasias Glandulares y Epiteliales/genética , Proteínas Proto-Oncogénicas c-myc/genética , Neoplasias del Timo/genética , Factores de Transcripción/genética , Células Cultivadas , Humanos
20.
Cell Death Dis ; 12(10): 870, 2021 09 24.
Artículo en Inglés | MEDLINE | ID: mdl-34561421

RESUMEN

Chronic myeloid leukemia (CML) is a myeloproliferative neoplasm caused by the presence of tyrosine kinase BCR-ABL1 fusion protein, which deregulate transcription and mRNA translation. Tyrosine kinase inhibitors (TKIs) are the first-choice treatment. However, resistance to TKIs remains a challenge to cure CML patients. Here, we reveal that the m6A methyltransferase complex METTL3/METTL14 is upregulated in CML patients and that is required for proliferation of primary CML cells and CML cell lines sensitive and resistant to the TKI imatinib. We demonstrate that depletion of METTL3 strongly impairs global translation efficiency. In particular, our data show that METTL3 is crucial for the expression of genes involved in ribosome biogenesis and translation. Specifically, we found that METTL3 directly regulates the level of PES1 protein identified as an oncogene in several tumors. We propose a model in which nuclear METTL3/METTL14 methyltransferase complex modified nascent transcripts whose translation is enhanced by cytoplasmic localization of METTL3, independently from its catalytic activity. In conclusion, our results point to METTL3 as a novel relevant oncogene in CML and as a promising therapeutic target for TKI resistant CML.


Asunto(s)
Leucemia Mielógena Crónica BCR-ABL Positiva/genética , Leucemia Mielógena Crónica BCR-ABL Positiva/patología , Metiltransferasas/metabolismo , Biosíntesis de Proteínas , Adenosina/análogos & derivados , Adenosina/metabolismo , Catálisis , Línea Celular Tumoral , Núcleo Celular/metabolismo , Proliferación Celular , Supervivencia Celular , Resistencia a Antineoplásicos/efectos de los fármacos , Técnicas de Silenciamiento del Gen , Humanos , Mesilato de Imatinib/farmacología , Mesilato de Imatinib/uso terapéutico , Leucemia Mielógena Crónica BCR-ABL Positiva/tratamiento farmacológico , Modelos Biológicos , Proteínas Proto-Oncogénicas c-myc/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Regulación hacia Arriba
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...