Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Biomol Struct Dyn ; : 1-13, 2023 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-37937794

RESUMEN

In this study, we have successfully synthesized magnetic Fe3O4 nanoparticles adorned with samarium (Sm-MNPs) utilizing ginger extract for the very first time. Furthermore, a comprehensive characterization of the nanoparticles along with an exploration of their physicochemical attributes was conducted. The biological functionalities of the synthesized nanoparticles were investigated through a thorough examination of their interaction with calf thymus DNA (ctDNA) using diverse spectroscopic techniques encompassing ultraviolet-visible (UV-Vis) and fluorescence spectroscopy at varying temperatures. Subsequently, we evaluated the cytotoxicity of the magnetic nanoparticles using a colorectal cancer cell model (HCT116 cells) and a tetrazolium colorimetric assay (MTT assay). The characterization of the ginger extract-coated magnetic nanoparticles (ginger-Sm-MNPs) revealed their superparamagnetic nature, nanocrystalline structure, spherical morphology, hydrodynamic size of 155 nm, and uniform distribution. The outcomes from UV-Vis and fluorescence spectroscopy affirmed the binding of ginger-Sm-MNPs with ctDNA. Additionally, the MTT assay demonstrated that the cytotoxicity of ginger-Sm-MNPs surpassed that of both magnetite nanoparticles and ginger extract. Notably, the inhibitory concentrations (IC50) for the green-synthesized nanoparticles after 24 and 48 h of incubation were determined as 198.1 and 135.8 µg/mL, respectively. In conclusion, our study findings suggest the potential utility of ginger-Sm-MNPs as a promising candidate for various biomedical applications.Communicated by Ramaswamy H. Sarma.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...