Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 16(2): 2449-2456, 2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38117013

RESUMEN

GaAs nanowires are promising candidates for emerging devices in a broad field of applications (e.g., nanoelectronics, photodetection, or photoconversion). These nanostructures benefit greatly from a vertical integration, as it allows for the exhibition of the entire nanowire surface. However, one of the main challenges related to vertical integration is the conception of an efficient method to create low resistive contacts at nanoscale without degrading the device performance. In this article, we propose a complementary metal-oxide-semiconductor (CMOS)-compatible approach to form alloyed contacts at the extremities of vertical GaAs nanowires. Ni-based and Pd-based alloys on different vertical GaAs nanostructures have been characterized by structural and chemical analyses to identify the phase and to study the growth mechanisms involved at the nanoscale. It is shown that the formation of the Ni3GaAs alloy on top of nanowires following the epitaxial relation Ni3GaAs(0001)∥GaAs(111) leads to a pyramidal shape with four faces. Finally, guidelines are presented to tune the shape of this alloy by varying the initial metal thickness and nanowire diameters. It will facilitate the fabrication of a nanoalloy structure with tailored shape characteristics to precisely align with a designated application.

2.
Mater Horiz ; 10(11): 4952-4959, 2023 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-37609955

RESUMEN

Induction heating has been applied for a variety of purposes over the years, including hyperthermia-induced cell death, industrial manufacturing, and heterogeneous catalysis. However, its potential in materials synthesis has not been extensively studied. Herein, we have demonstrated magnetic induction heating-assisted synthesis of core-shell nanoparticles starting from a magnetic core. The induction heating approach allows an easy synthesis of FeNi3@Mo and Fe2.2C@Mo nanoparticles containing a significantly higher amount of molybdenum on the surface than similar materials synthesized using conventional heating. Exhaustive electron microscopy, X-ray diffraction, and X-ray photoelectron spectroscopy characterization data are presented to establish the core-shell structures. Furthermore, the molybdenum shell was transformed into the Mo2C phase, and the catalytic activity of the resulting nanoparticles tested for the propane dry reforming reaction under induction heating. Lastly, the beneficial role of induction heating-mediated synthesis was extended toward the preparation of the FeNi3@WOx core-shell nanoparticles.

3.
Angew Chem Int Ed Engl ; 62(36): e202308983, 2023 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-37453077

RESUMEN

We have studied the photoredox-catalyzed hydrogen isotope exchange (HIE) reaction with deuterium or tritium gas as isotope sources and in situ formed transition metal nanoparticles as hydrogen atom transfer pre-catalysts. By this means we have found synergistic reactivities applying two different HIE mechanisms, namely photoredox-catalyzed and CH-functionalization HIE leading to the synthesis of highly deuterated complex molecules. Finally, we adopted these findings successfully to tritium chemistry.

4.
Nanomaterials (Basel) ; 13(9)2023 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-37177019

RESUMEN

In the present paper, we compare the activity, selectivity, and stability of a supported nickel catalyst in classical heating conditions and in magnetically activated catalysis by using iron wool as a heating agent. The catalyst, 5 wt% Ni supported on titania (Degussa P25), was prepared via an organometallic decomposition method and was thoroughly characterized by using elemental, microscopic, and diffraction techniques. In the event of magnetic induction heating, the % CO2 conversion reached a maximum of ~85% compared to ~78% for thermal conditions at a slightly lower temperature (~335 °C) than the thermal heating (380 °C). More importantly, both processes were found to be stable for 45 h on stream. Moreover, the effects of magnetic induction and classical heating over the catalyst evolution were discussed. This study demonstrated the potential of magnetic heating-mediated methanation, which is currently under investigation for the development of pilot-scale reactors.

5.
ChemSusChem ; 16(12): e202300009, 2023 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-36877569

RESUMEN

The reduction of biomass-derived compounds gives access to valuable chemicals from renewable sources, circumventing the use of fossil feedstocks. Herein, we describe the use of iron-nickel magnetic nanoparticles for the reduction of biomass model compounds in aqueous media under magnetic induction. Nanoparticles with a hydrophobic ligand (FeNi3 -PA, PA=palmitic acid) have been employed successfully, and their catalytic performance is intended to improve by ligand exchange with lysine (FeNi3 -Lys and FeNi3 @Ni-Lys NPs) to enhance water dispersibility. All three catalysts have been used to hydrogenate 5-hydroxymethylfurfural into 2,5-bis(hydroxymethyl)furan with complete selectivity and almost quantitative yields, using 3 bar of H2 and a magnetic field of 65 mT in water. These catalysts have been recycled up to 10 times maintaining high conversions. Under the same conditions, levulinic acid has been hydrogenated to γ-valerolactone, and 4'-hydroxyacetophenone hydrodeoxygenated to 4-ethylphenol, with conversions up to 70 % using FeNi3 -Lys, and selectivities above 85 % in both cases. This promising catalytic system improves biomass reduction sustainability by avoiding noble metals and expensive ligands, increasing energy efficiency via magnetic induction heating, using low H2 pressure, and proving good reusability while working in an aqueous medium.


Asunto(s)
Nanopartículas del Metal , Agua , Lisina , Biomasa , Ligandos , Nanopartículas del Metal/química , Fenómenos Magnéticos , Catálisis
6.
Chem Commun (Camb) ; 59(8): 1062-1065, 2023 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-36606591

RESUMEN

Labelling of amino-acids is important for the production of deuterated proteins. However, aromatic amino-acid reduction is a common undesired process with noble-metal nanocatalysts. In this work, we describe a new NHC-stabilized water-soluble Pd/Ni system able to perform H/D exchange reactions in an enantiospecific fashion without reducing the aromatic ring of phenylalanine and tyrosine thanks to a synergetic Pd-Ni effect.


Asunto(s)
Aminoácidos Aromáticos , Nanopartículas , Agua , Aminoácidos , Tirosina
7.
Nanoscale ; 15(4): 1739-1753, 2023 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-36598381

RESUMEN

2D ultrathin metal nanostructures are emerging materials displaying distinct physical and chemical properties compared to their analogues of different dimensionalities. Nanosheets of fcc metals are intriguing, as their crystal structure does not favour a 2D configuration. Thanks to their increased surface-to-volume ratios and the optimal exposure of low-coordinated sites, 2D metal nanostructures can be advantageously exploited in catalysis. Synthesis approaches to ultrathin nanosheets of pure platinum are scarce compared to other noble metals and to Pt-based alloys. Here, we present the selective synthesis of Pt ultrathin nansosheets by a simple seeded-growth method. The most crucial point in our approach is the selective synthesis of Pt seeds comprising planar defects, a main driving force for the 2D growth of metals with fcc structure. Defect engineering is employed here, not in order to disintegrate, but for conserving the defect comprising seeds. This is achieved by in situ elimination of the principal etching agent, chloride, which is present in the PtCl2 precursor. As a result of etching suppression, twinned nuclei, that are selectively formed during the early stage of nucleation, survive and grow to multipods comprising planar defects. Using the twinned multipods as seeds for the subsequent 2D overgrowth of Pt from Pt(acac)2 yields ultrathin dendritic nanosheets, in which the planar defects are conserved. Using phenylacetylene hydrogenation as a model reaction of selective hydrogenation, we compared the performance of Pt nanosheets to that of a commercial Pt/C catalyst. The Pt nanosheets show better stability and much higher selectivity to styrene than the commercial Pt/C catalyst for comparable activity.

8.
ChemSusChem ; 16(1): e202201724, 2023 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-36379873

RESUMEN

A new selective and efficient catalytic system for magnetically induced catalytic CO2 methanation was developed, composed of an abundant iron-based heating agent, namely a commercial iron wool, combined with supported Nickel nanoparticles (Ni NPs) as catalysts. The effect of metal oxide support was evaluated by preparing different 10 wt % Ni catalyst (TiO2 , ZrO2 , CeO2 , and CeZrO2 ) via organometallic decomposition route. As-prepared catalysts were thoroughly characterized using powder X-ray diffraction, electron microscopy, elemental analysis, vibrating sample magnetometer, and X-ray photoelectron spectroscopy techniques. High conversion and selectivity toward methane were observed at mid-temperature range, hence improving energy efficiency of the process with respect to the previous results under magnetic heating conditions. To gain further insight into the catalytic system, the effects of the synthesis method and of 0.5 wt % Ru doping were evaluated. Finally, the dynamic nature of magnetically induced heating was demonstrated through fast stop-and-go experiments, proving the suitability of this technology for the storage of intermittent renewable energy through P2G process.

9.
Nanotechnology ; 33(48)2022 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-35998566

RESUMEN

Integrating self-catalyzed InAs nanowires on Si(111) is an important step toward building vertical gate-all-around transistors. The complementary metal oxide semiconductor (CMOS) compatibility and the nanowire aspect ratio are two crucial parameters to consider. In this work, we optimize the InAs nanowire morphology by changing the growth mode from Vapor-Solid to Vapor-Liquid-Solid in a CMOS compatible process. We study the key role of the Hydrogen surface preparation on nanowire growths and bound it to a change of the chemical potential and adatoms diffusion length on the substrate. We transfer the optimized process to patterned wafers and adapt both the surface preparation and the growth conditions. Once group III and V fluxes are balances, aspect ratio can be improved by increasing the system kinetics. Overall, we propose a method for large scale integration of CMOS compatible InAs nanowire on silicon and highlight the major role of kinetics on the growth mechanism.

10.
ACS Appl Mater Interfaces ; 13(30): 36492-36498, 2021 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-34296846

RESUMEN

Bismuth-antimony alloy (Bi1 - xSbx) is the first reported 3D topological insulator (TI). Among many TIs reported to date, it remains the most promising for spintronic applications thanks to its large conductivity, its colossal spin Hall angle, and the possibility to build low-current spin-orbit-torque magnetoresistive random access memories. Nevertheless, the 2D integration of TIs on industrial standards is lacking. In this work, we report the integration of high-quality rhombohedral BiSb(0001) topological insulators on a cubic GaAs(001) substrate. We demonstrate a clear epitaxial relationship at the interface, a fully relaxed TI layer, and the growth of a rhombohedral matrix on top of the cubic substrate. The antimony composition of the Bi1 - xSbx layer is perfectly controlled and covers almost the whole TI window. For optimized growth conditions, the sample generates a semiconductor band structure at room temperature in the bulk and exhibits metallic surface states at 77 K.

11.
ACS Appl Nano Mater ; 3(7): 7076-7087, 2020 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-32743352

RESUMEN

Magnetically induced catalysis using magnetic nanoparticles (MagNPs) as heating agents is a new efficient method to perform reactions at high temperatures. However, the main limitation is the lack of stability of the catalysts operating in such harsh conditions. Normally, above 500 °C, significant sintering of MagNPs takes place. Here we present encapsulated magnetic FeCo and Co NPs in carbon (Co@C and FeCo@C) as an ultrastable heating material suitable for high-temperature magnetic catalysis. Indeed, FeCo@C or a mixture of FeCo@C:Co@C (2:1) decorated with Ni or Pt-Sn showed good stability in terms of temperature and catalytic performances. In addition, consistent conversions and selectivities regarding conventional heating were observed for CO2 methanation (Sabatier reaction), propane dehydrogenation (PDH), and propane dry reforming (PDR). Thus, the encapsulation of MagNPs in carbon constitutes a major advance in the development of stable catalysts for high-temperature magnetically induced catalysis.

12.
Angew Chem Int Ed Engl ; 59(36): 15537-15542, 2020 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-32574410

RESUMEN

Magnetically induced catalysis can be promoted taking advantage of optimal heating properties from the magnetic nanoparticles to be employed. However, when unprotected, these heating agents that are usually air-sensitive, get sintered under the harsh catalytic conditions. In this context, we present, to the best of our knowledge, the first example of air-stable magnetic nanoparticles that: 1) show excellent performance as heating agents in the CO2 methanation catalyzed by Ni/SiRAlOx, with CH4 yields above 95 %, and 2) do not sinter under reaction conditions. To attain both characteristics we demonstrate, first the exchange-coupled magnetic approach as an alternative and effective way to tune the magnetic response and heating efficiency, and second, the chemical stability of cuboctahedron-shaped core-shell hard CoFe2 O4 -soft Fe3 O4 nanoparticles.

13.
Nat Commun ; 11(1): 2051, 2020 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-32345967

RESUMEN

A key challenge for designing hybrid materials is the development of chemical tools to control the organization of inorganic nanoobjects at low scales, from mesoscopic (~µm) to nanometric (~nm). So far, the most efficient strategy to align assemblies of nanoparticles consists in a bottom-up approach by decorating block copolymer lamellae with nanoobjects. This well accomplished procedure is nonetheless limited by the thermodynamic constraints that govern copolymer assembly, the entropy of mixing as described by the Flory-Huggins solution theory supplemented by the critical influence of the volume fraction of the block components. Here we show that a completely different approach can lead to tunable 2D lamellar organization of nanoparticles with homopolymers only, on condition that few elementary rules are respected: 1) the polymer spontaneously allows a structural preorganization, 2) the polymer owns functional groups that interact with the nanoparticle surface, 3) the nanoparticles show a surface accessible for coordination.


Asunto(s)
Nanopartículas del Metal/química , Péptidos/química , Platino (Metal)/química , Polímeros/química , Nanopartículas del Metal/ultraestructura , Espectroscopía de Fotoelectrones , Polimerizacion
14.
Angew Chem Int Ed Engl ; 59(15): 6187-6191, 2020 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-31972063

RESUMEN

Induction heating of magnetic nanoparticles (NPs) is a method to activate heterogeneous catalytic reactions. It requires nano-objects displaying high heating power and excellent catalytic activity. Here, using a surface engineering approach, bimetallic NPs are used for magnetically induced CO2 methanation, acting both as heating agent and catalyst. The organometallic synthesis of Fe30 Ni70 NPs displaying high heating powers at low magnetic field amplitudes is described. The NPs are active but only slightly selective for CH4 after deposition on SiRAlOx owing to an iron-rich shell (25 mL min-1 , 25 mT, 300 kHz, conversion 71 %, methane selectivity 65 %). Proper surface engineering consisting of depositing a thin Ni layer leads to Fe30 Ni70 @Ni NPs displaying a very high activity for CO2 hydrogenation and a full selectivity. A quantitative yield in methane is obtained at low magnetic field and mild conditions (25 mL min-1 , 19 mT, 300 kHz, conversion 100 %, methane selectivity 100 %).

15.
Microsc Microanal ; 26(1): 76-85, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31918773

RESUMEN

In this paper, an improved quantification technique for STEM/EDX measurements of 1D dopant profiles based on the Cliff-Lorimer equation is presented. The technique uses an iterative absorption correction procedure based on density models correlating the local mass density and composition of the specimen. Moreover, a calibration and error estimation procedure based on linear regression and error propagation is proposed in order to estimate the total measurement error in the dopant density. The proposed approach is applied to the measurement of the As profile in a nanodevice test structure. For the calibration, two crystalline Si specimens implanted with different As doses have been used, and the calibration of the Cliff-Lorimer coefficients has been carried out using Rutherford Back Scattering measurements. The As profile measurement has been carried out on an FinFET test structure, showing that quantitative results can be obtained in the nanometer scale and for dopant atomic densities lower than 1%. Using the proposed approach, the measurement error and detection limit for our experimental setup are calculated and the possibility to improve this limit by increasing the observation time is discussed.

16.
Angew Chem Int Ed Engl ; 59(47): 21114-21120, 2020 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-33463019

RESUMEN

Radiolabelling is fundamental in drug discovery and development as it is mandatory for preclinical ADME studies and late-stage human clinical trials. Herein, a general, effective, and easy to implement method for the multiple site incorporation of deuterium and tritium atoms using the commercially available and air-stable iridium precatalyst [Ir(COD)(OMe)]2 is described. A large scope of pharmaceutically relevant substructures can be labelled using this method including pyridine, pyrazine, indole, carbazole, aniline, oxa-/thia-zoles, thiophene, but also electron-rich phenyl groups. The high functional group tolerance of the reaction is highlighted by the labelling of a wide range of complex pharmaceuticals, containing notably halogen or sulfur atoms and nitrile groups. The multiple site hydrogen isotope incorporation has been explained by the in situ formation of complementary catalytically active species: monometallic iridium complexes and iridium nanoparticles.


Asunto(s)
Deuterio/química , Compuestos Heterocíclicos/síntesis química , Marcaje Isotópico/métodos , Tritio/química , Catálisis , Complejos de Coordinación/química , Iridio/química
17.
Angew Chem Int Ed Engl ; 58(33): 11306-11310, 2019 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-31187581

RESUMEN

Magnetic heating has recently been demonstrated as an efficient way to perform catalytic reactions after deposition of the heating agent and the catalyst on a support. Here we show that in solution, and under mild conditions of mean temperature and pressure, it is possible to use magnetic heating to carry out transformations that are otherwise performed heterogeneously at high pressure and/or high temperature. As a proof of concept, we chose the hydrodeoxygenation of acetophenone derivatives and of biomass-derived molecules, namely furfural and hydroxymethylfurfural. These reactions are difficult, require heterogeneous catalysts and high pressures, and, to the best of our knowledge, have no precedent in standard solution. Here, hydrodeoxygenations are fully selective under mild conditions (3 bar H2 , moderate mean temperature of the solvent). The reason for this reactivity is the fast heating of the particles well above the boiling temperature of the solvent and the local creation of hot spots surrounded by a vapor layer, in which high temperature and pressure may be present. This technology may be practicable for many organic transformations.

18.
ACS Nano ; 13(3): 2870-2878, 2019 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-30822381

RESUMEN

Magnetic nanoparticles are important tools for biomedicine, where they serve as versatile multifunctional instruments for a wide range of applications. Among these applications, magnetic hyperthermia is of special interest for the destruction of tumors and triggering of drug delivery. However, many applications of magnetic nanoparticles require high-quality magnetic nanoparticles displaying high specific absorption rates (SARs), which remains a challenge today. We report here the functionalization and stabilization in aqueous media of highly magnetic 15 nm iron carbide nanoparticles featuring excellent heating power through magnetic induction. The challenge of achieving water solubility and colloidal stability was addressed by designing and using specific dopamine-based ligands. The resulting nanoparticles were completely stable for several months in water, phosphate, phosphate-buffered saline, and serum-containing media. Iron carbide nanoparticles displayed high SARs in water and viscous media (water/glycerol mixtures), even after extended exposition to water and oxygen (SAR up to 1000 W·g-1 in water at 100 kHz, 47 mT). The cytotoxicity and cellular uptake of iron carbide nanoparticles could be easily tuned and were highly dependent on the chemical structure of the ligands used.


Asunto(s)
Materiales Biocompatibles/química , Compuestos Inorgánicos de Carbono/química , Compuestos de Hierro/química , Nanopartículas de Magnetita/química , Agua/química , Materiales Biocompatibles/síntesis química , Compuestos Inorgánicos de Carbono/síntesis química , Dopamina/síntesis química , Dopamina/química , Glicerol/química , Células HeLa , Humanos , Compuestos de Hierro/síntesis química , Ligandos , Estructura Molecular , Oxígeno/química
19.
Nanoscale ; 11(12): 5402-5411, 2019 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-30854537

RESUMEN

Heating magnetic nanoparticles with high frequency magnetic fields is a topic of interest for biological applications (magnetic hyperthermia) as well as for heterogeneous catalysis. This study shows why FeC NPs of similar structures and static magnetic properties display radically different heating power (SAR from 0 to 2 kW g-1). By combining results from Transmission Electron Microscopy (TEM), Dynamic Light Scattering (DLS) and static and time-dependent high-frequency magnetic measurements, we propose a model describing the heating mechanism in FeC nanoparticles. Using, for the first time, time-dependent high-frequency hysteresis loop measurements, it is shown that in the samples displaying the larger heating powers, the hysteresis is strongly time dependent. More precisely, the hysteresis area increases by a factor 10 on a timescale of a few tens of seconds. This effect is directly related to the ability of the nanoparticles to form chains under magnetic excitation, which depends on the presence or not of strong dipolar couplings. These differences are due to different ligand concentrations on the surface of the particles. As a result, this study allows the design of a scalable synthesis of nanomaterials displaying a controllable and reproducible SAR.

20.
Chempluschem ; 84(3): 302-306, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-31950761

RESUMEN

A novel approach for the synthesis of Fe(0) nanoparticles (NPs) with tunable sizes and shapes is reported. Ultrasmall Fe(0) NPs were reacted under mild conditions in the presence of a mixture of palmitic acid and amine ligands. These NPs acted not only as preformed seeds but also as an internal iron(II) source that was produced by the partial dissolution of the NPs by the acid. This fairly simple approach allows the strict separation of the nucleation and the growth steps. By changing the acid concentration, a fine tuning of the relative ratio between the remaining Fe(0) seeds and the iron(II) reservoir was achieved, giving access to both size (from 7 to 20 nm) and shape (spheres, cubes or stars) control. The partial dissolution of the ultrasmall Fe(0) NPs into iron(II) source and the successive growth was further studied by using combined TEM and Mössbauer spectroscopy. The successive corrosion, coalescence, and ripening observed could be understood in the framework of an environment-dependent growth model.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...