Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 214
Filtrar
1.
Pharmacol Res ; 204: 107207, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38734193

RESUMEN

In recent years several experimental observations demonstrated that the gut microbiome plays a role in regulating positively or negatively metabolic homeostasis. Indole-3-propionic acid (IPA), a Tryptophan catabolic product mainly produced by C. Sporogenes, has been recently shown to exert either favorable or unfavorable effects in the context of metabolic and cardiovascular diseases. We performed a study to delineate clinical and multiomics characteristics of human subjects characterized by low and high IPA levels. Subjects with low IPA blood levels showed insulin resistance, overweight, low-grade inflammation, and features of metabolic syndrome compared to those with high IPA. Metabolomics analysis revealed that IPA was negatively correlated with leucine, isoleucine, and valine metabolism. Transcriptomics analysis in colon tissue revealed the enrichment of several signaling, regulatory, and metabolic processes. Metagenomics revealed several OTU of ruminococcus, alistipes, blautia, butyrivibrio and akkermansia were significantly enriched in highIPA group while in lowIPA group Escherichia-Shigella, megasphera, and Desulfovibrio genus were more abundant. Next, we tested the hypothesis that treatment with IPA in a mouse model may recapitulate the observations of human subjects, at least in part. We found that a short treatment with IPA (4 days at 20/mg/kg) improved glucose tolerance and Akt phosphorylation in the skeletal muscle level, while regulating blood BCAA levels and gene expression in colon tissue, all consistent with results observed in human subjects stratified for IPA levels. Our results suggest that treatment with IPA may be considered a potential strategy to improve insulin resistance in subjects with dysbiosis.

3.
Biomedicines ; 12(2)2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38397866

RESUMEN

BACKGROUND: The pathogenesis of many syncopal episodes remains unexplained. Intestinal dysbiosis could be involved in the pathophysiological mechanisms of syncope due to its connection with the central nervous system via the microbiota-gut-brain axis. This pilot study aimed to explore the specific cardiometabolic risk factors and gut microbiota in unexplained syncope (US), compared to other types of syncope, to assess their similarity or verify their different origins. METHODS: We studied 86 participants with syncope, who were divided into four groups: an orthostatic syncope group (OH, n = 24), a neuromediated syncope group (NMS, n = 26), a cardiological syncope group (CS, n = 9), and an unexplained syncope group (US, n = 27). We evaluated the anthropometric, clinical, and metabolic characteristics of the four groups; the α- and ß-diversity; and the differences in the abundance of the microbial taxa. RESULTS: The US group had a lower incidence of systolic hypertension at the first visit and a lower frequency of patients with nocturnal hypertension than the CS group. Compared to the OH and NMS groups, the US group had a higher incidence of carotid plaques and greater carotid intima-media thickness, respectively. The microbiota differed significantly between the US and CS groups, but not between the US group and the OH or NMS group. CONCLUSIONS: We observed significant differences in the gut microbiota between CS and US. Future studies are necessary to evaluate the involvement of the gut microbiota in the complex pathogenesis of syncope and whether its analysis could support the interpretation of the pathophysiological mechasnisms underlying some episodes classifiable as US.

4.
Front Cardiovasc Med ; 11: 1345218, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38370153

RESUMEN

Arterial hypertension represents a leading cause of cardiovascular morbidity and mortality worldwide, and the identification of effective solutions for treating the early stages of elevated blood pressure (BP) is still a relevant issue for cardiovascular risk prevention. The pathophysiological basis for the occurrence of elevated BP and the onset of arterial hypertension have been widely studied in recent years. In addition, consistent progress in the development of novel, powerful, antihypertensive drugs and their appropriate applications in controlling BP have increased our potential for successfully managing disease states characterized by abnormal blood pressure. However, the mechanisms responsible for the disruption of endogenous mechanisms contributing to the maintenance of BP within a normal range are yet to be fully clarified. Recently, evidence has shown that several natural antioxidants containing active ingredients originating from natural plant extracts, used alone or in combination, may represent a valid solution for counteracting the development of arterial hypertension. In particular, there is evidence to show that natural antioxidants may enhance the viability of endothelial cells undergoing oxidative damage, an effect that could play a crucial role in the pathophysiological events accompanying the early stages of arterial hypertension. The present review aims to reassess the role of oxidative stress on endothelial dysfunction in the onset and progression of arterial hypertension and that of natural antioxidants in covering several unmet needs in the treatment of such diseases.

6.
Clin Res Cardiol ; 2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38252145

RESUMEN

AIMS: Glucagon-like peptide-1 receptor agonists (GLP1-ra) have shown to reduce cardiovascular (CV) events in patients with diabetes, including heart failure (HF) hospitalizations. However, whether such benefit consistently occurs in patients with history of HF remains uncertain. We performed a systematic review and meta-analysis to assess the impact of GLP1-ra on CV outcomes in patients with and without HF history. METHODS AND RESULTS: All randomized, placebo-controlled trials evaluating GLP1-ra and reporting CV outcomes stratified by HF history were searched in Pubmed from inception to November 12th, 2023. The primary outcome was HF hospitalizations. Secondary outcomes included CV death, the composite of CV death and hospitalizations for HF, and major adverse cardiovascular events (MACE). Hazard ratio (HR) and 95% confidence interval (CIs) were used as effect estimates and calculated with a random-effects model. 68,653 patients (GLP1-ra = 34,301, placebo = 34,352) from 10 trials were included. GLP1-ra reduced HF hospitalization (no HF: HR = 0.79, 95% CI 0.63-0.98; HF: HR = 1.00, 95% CI 0.82-1.24, pinteraction = 0.12), CV death (no HF: HR = 0.81, 95% CI 0.71-0.92; HF: HR = 0.97, 95% CI 0.81-1.15, pinteraction = 0.11), and the composite of HF hospitalizations and CV death (no HF: HR = 0.80, 95% CI 0.72-0.89; HF: HR = 1.00 95% CI 0.88-1.15, pinteraction = 0.010) only in patients without history of HF, despite a significant interaction between HF history and treatment effect was detected only for the latter. MACE were reduced in both subgroups without significant interaction between HF history and treatment effect (no HF: HR = 0.86, 95% CI 0.78-0.96; HF: HR = 0.83, 95% CI 0.72-0.95, pinteraction = 0.69). CONCLUSION: GLP1-ra do not decrease HF-hospitalization risk, despite a potential benefit in patients without history of HF, but are effective in reducing ischemic events irrespective of the presence of HF. PROSPERO-registered (CRD42022371264).

7.
Pharmacol Res ; 199: 107011, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38029806

RESUMEN

BACKGROUND: Night shift work is associated with sleep disturbances, obesity, and cardiometabolic diseases. Disruption of the circadian clock system has been suggested to be an independent cause of type 2 diabetes and cardiovascular disease in shift workers. We aimed to improve alignment of circadian timing with social and environmental factors with administration of melatonin. METHODS: In a randomized, placebo-controlled, prospective study, we analysed the effects of 2 mg of sustained-release melatonin versus placebo on glucose tolerance, insulin resistance indices, sleep quality, circadian profiles of plasma melatonin and cortisol, and diurnal blood pressure profiles in 24 rotating night shift workers during 12 weeks of treatment, followed by 12 weeks of wash-out. In a novel design, the time of melatonin administration (at night or in the morning) depended upon the shift schedule. We also compared the baseline profiles of the night shift (NS) workers with 12 healthy non-night shift (NNS)-working controls. RESULTS: We found significantly impaired indices of insulin resistance at baseline in NS versus NNS (p < 0.05), but no differences in oral glucose tolerance tests nor in the diurnal profiles of melatonin, cortisol, or blood pressure. Twelve weeks of melatonin treatment did not significantly improve insulin resistance, nor did it significantly affect diurnal blood pressure or melatonin and cortisol profiles. Melatonin administration, however, caused a significant improvement in sleep quality which was significantly impaired in NS versus NNS at baseline (p < 0.001). CONCLUSIONS: Rotating night shift work causes mild-to-moderate impairment of sleep quality and insulin resistance. Melatonin treatment at bedtime improves sleep quality, but does not significantly affect insulin resistance in rotating night shift workers after 12 weeks of administration.


Asunto(s)
Diabetes Mellitus Tipo 2 , Resistencia a la Insulina , Melatonina , Humanos , Sueño , Melatonina/uso terapéutico , Melatonina/farmacología , Ritmo Circadiano , Hidrocortisona/farmacología , Presión Sanguínea , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Estudios Prospectivos
9.
Cell Rep Med ; 4(12): 101341, 2023 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-38118419

RESUMEN

The gut microbiota contributes to the pathophysiology of non-alcoholic fatty liver disease (NAFLD). Histidine is a key energy source for the microbiota, scavenging it from the host. Its role in NAFLD is poorly known. Plasma metabolomics, liver transcriptomics, and fecal metagenomics were performed in three human cohorts coupled with hepatocyte, rodent, and Drosophila models. Machine learning analyses identified plasma histidine as being strongly inversely associated with steatosis and linked to a hepatic transcriptomic signature involved in insulin signaling, inflammation, and trace amine-associated receptor 1. Circulating histidine was inversely associated with Proteobacteria and positively with bacteria lacking the histidine utilization (Hut) system. Histidine supplementation improved NAFLD in different animal models (diet-induced NAFLD in mouse and flies, ob/ob mouse, and ovariectomized rats) and reduced de novo lipogenesis. Fecal microbiota transplantation (FMT) from low-histidine donors and mono-colonization of germ-free flies with Enterobacter cloacae increased triglyceride accumulation and reduced histidine content. The interplay among microbiota, histidine catabolism, and NAFLD opens therapeutic opportunities.


Asunto(s)
Microbioma Gastrointestinal , Enfermedad del Hígado Graso no Alcohólico , Obesidad Mórbida , Humanos , Ratones , Ratas , Animales , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Histidina/uso terapéutico , Microbioma Gastrointestinal/fisiología , Dieta Alta en Grasa
10.
Biomolecules ; 13(12)2023 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-38136567

RESUMEN

Atherosclerosis is a chronic inflammatory disease characterized by lipid and inflammatory cell deposits in the inner layer of large- and medium-sized elastic and muscular arteries. Diabetes mellitus (DM) significantly increases the risk of cardiovascular diseases and the overall and cardiovascular mortality, and it is a pro-atherogenic factor that induces atherosclerosis development and/or accelerates its progression through a multifactorial process. Glucagon-like peptide-1 receptor agonists (GLP-1RAs) are a new class of drugs, belonging to the armamentarium to fight type 2 DM, that have shown robust reductions in atherosclerotic events and all-cause mortality in all studies. Preclinical studies have shown that GLP-1RAs play a role in the immunomodulation of atherosclerosis, affecting multiple pathways involved in plaque development and progression. In this review, we wanted to explore the translational power of such preclinical studies by analyzing the most recent clinical trials investigating the atheroprotective effect of GLP-1RAs.


Asunto(s)
Aterosclerosis , Enfermedades Cardiovasculares , Diabetes Mellitus Tipo 2 , Inhibidores de Hidroximetilglutaril-CoA Reductasas , Humanos , Hipoglucemiantes/uso terapéutico , Agonistas Receptor de Péptidos Similares al Glucagón , Inhibidores de Hidroximetilglutaril-CoA Reductasas/uso terapéutico , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Enfermedades Cardiovasculares/tratamiento farmacológico , Aterosclerosis/tratamiento farmacológico , Receptor del Péptido 1 Similar al Glucagón/metabolismo
11.
Cell Death Dis ; 14(10): 691, 2023 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-37863894

RESUMEN

Atherosclerosis is a chronic inflammatory disease characterized by the accumulation of fatty deposits in the inner walls of vessels. These plaques restrict blood flow and lead to complications such as heart attack or stroke. The development of atherosclerosis is influenced by a variety of factors, including age, genetics, lifestyle, and underlying health conditions such as high blood pressure or diabetes. Atherosclerotic plaques in stable form are characterized by slow growth, which leads to luminal stenosis, with low embolic potential or in unstable form, which contributes to high risk for thrombotic and embolic complications with rapid clinical onset. In this complex scenario of atherosclerosis, macrophages participate in the whole process, including the initiation, growth and eventually rupture and wound healing stages of artery plaque formation. Macrophages in plaques exhibit high heterogeneity and plasticity, which affect the evolving plaque microenvironment, e.g., leading to excessive lipid accumulation, cytokine hyperactivation, hypoxia, apoptosis and necroptosis. The metabolic and functional transitions of plaque macrophages in response to plaque microenvironmental factors not only influence ongoing and imminent inflammatory responses within the lesions but also directly dictate atherosclerotic progression or regression. In this review, we discuss the origin of macrophages within plaques, their phenotypic diversity, metabolic shifts, and fate and the roles they play in the dynamic progression of atherosclerosis. It also describes how macrophages interact with other plaque cells, particularly T cells. Ultimately, targeting pathways involved in macrophage polarization may lead to innovative and promising approaches for precision medicine. Further insights into the landscape and biological features of macrophages within atherosclerotic plaques may offer valuable information for optimizing future clinical treatment for atherosclerosis by targeting macrophages.


Asunto(s)
Aterosclerosis , Infarto del Miocardio , Placa Aterosclerótica , Humanos , Placa Aterosclerótica/patología , Aterosclerosis/patología , Macrófagos/metabolismo , Apoptosis , Infarto del Miocardio/metabolismo
12.
Lupus Sci Med ; 10(2)2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37852671

RESUMEN

OBJECTIVES: Patients with SLE have higher cardiovascular (CV) risk compared with healthy controls (HC) and are characterised by accelerated atherosclerosis; intima media thickness (IMT), marker of subclinical atherosclerosis, is higher in patients with SLE than in HCs. Retinal microvascular impairment detected through optical coherence tomography angiography (OCTA) was investigated as a marker of systemic vascular involvement in SLE.The aim of the study was to evaluate the relationship between retinal vascular impairment and IMT in SLE. METHODS: Cross-sectional study recruiting patients with SLE and HCs. Data of the study population were collected. CV risk was evaluated through the American College of Cardiology/American Heart Association (ACC/AHA) guidelines, Framingham and QRESEARCH risk estimator V.3 (QRISK3) scores. Both groups underwent OCTA and carotid ultrasound with IMT assessment.Statistical analysis was accomplished using Pearson/Spearman, t-test/Mann-Whitney or χ2 test. Variables statistically significant at univariate regression analysis were tested in an age-corrected and sex-corrected multivariate regression model. RESULTS: 43 patients with SLE and 34 HCs were recruited. Patients with SLE showed higher triglycerides (p=0.019), Triglycerides-Glucose (TyG) Index (p=0.035), ACC/AHA guidelines (p=0.001), Framingham Risk Scores (p=0.008) and a reduced superficial (p<0.001) and deep (p=0.005) whole retinal vessel density (VD) compared with HCs.In SLE univariate analysis, deep whole VD showed a negative correlation with IMT (p=0.027), age (p=0.001), systolic blood pressure (p=0.011), QRISK3 Score (p<0.001), Systemic Lupus International Collaborating Clinics Damage Index (p=0.006) and apolipoprotein B (p=0.021), while a positive correlation was found with female sex (p=0.029). Age-adjusted and sex-adjusted multivariate analysis confirmed QRISK3 Score (p=0.049) and IMT (p=0.039) to be independent risk factors for reduced retinal VD. CONCLUSIONS: Patients with SLE showed lower retinal VD and higher CV risk indicators compared with HCs. Among patients with SLE, QRISK3 Score and IMT were found to be independent risk factors for retinal vascular impairment, suggesting a role of OCTA in evaluating preclinical CV involvement in SLE. Moreover, TyG Index could represent a biomarker of CV risk in patients with SLE compared with HCs.


Asunto(s)
Aterosclerosis , Lupus Eritematoso Sistémico , Estados Unidos , Humanos , Femenino , Grosor Intima-Media Carotídeo , Estudios Transversales , Lupus Eritematoso Sistémico/complicaciones , Aterosclerosis/complicaciones , Triglicéridos
14.
Pharmacol Res ; 196: 106931, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37722519

RESUMEN

Evidence exists that heart failure (HF) has an overall impact of 1-2 % in the global population being often associated with comorbidities that contribute to increased disease prevalence, hospitalization, and mortality. Recent advances in pharmacological approaches have significantly improved clinical outcomes for patients with vascular injury and HF. Nevertheless, there remains an unmet need to clarify the crucial role of nitric oxide/cyclic guanosine 3',5'-monophosphate (NO/cGMP) signalling in cardiac contraction and relaxation, to better identify the key mechanisms involved in the pathophysiology of myocardial dysfunction both with reduced (HFrEF) as well as preserved ejection fraction (HFpEF). Indeed, NO signalling plays a crucial role in cardiovascular homeostasis and its dysregulation induces a significant increase in oxidative and nitrosative stress, producing anatomical and physiological cardiac alterations that can lead to heart failure. The present review aims to examine the molecular mechanisms involved in the bioavailability of NO and its modulation of downstream pathways. In particular, we focus on the main therapeutic targets and emphasize the recent evidence of preclinical and clinical studies, describing the different emerging therapeutic strategies developed to counteract NO impaired signalling and cardiovascular disease (CVD) development.


Asunto(s)
Insuficiencia Cardíaca , Humanos , Insuficiencia Cardíaca/tratamiento farmacológico , Óxido Nítrico/metabolismo , Volumen Sistólico , Corazón , GMP Cíclico/metabolismo
15.
Int J Mol Sci ; 24(16)2023 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-37629146

RESUMEN

Evidence exists that the gut microbiota contributes to the alterations of lipid metabolism associated with high-fat diet (HFD). Moreover, the gut microbiota has been found to modulate the metabolism and absorption of dietary lipids, thereby affecting the formation of lipoproteins occurring at the intestinal level as well as systemically, though the pathophysiological implication of altered microbiota composition in HFD and its role in the development of atherosclerotic vascular disease (ATVD) remain to be better clarified. Recently, evidence has been collected indicating that supplementation with natural polyphenols and fibres accounts for an improvement of HFD-associated intestinal dysbiosis, thereby leading to improved lipidaemic profile. This study aimed to investigate the protective effect of a bergamot polyphenolic extract (BPE) containing 48% polyphenols enriched with albedo and pulp-derived micronized fibres (BMF) in the gut microbiota of HFD-induced dyslipidaemia. In particular, rats that received an HFD over a period of four consecutive weeks showed a significant increase in plasma cholesterol, triglycerides and plasma glucose compared to a normal-fat diet (NFD) group. This effect was accompanied by body weight increase and alteration of lipoprotein size and concentration, followed by high levels of MDA, a biomarker of lipid peroxidation. Treatment with a combination of BPE plus BMF (50/50%) resulted in a significant reduction in alterations of the metabolic parameters found in HFD-fed rats, an effect associated with increased size of lipoproteins. Furthermore, the effect of BPE plus BMF treatment on metabolic balance and lipoprotein size re-arrangement was associated with reduced gut-derived lipopolysaccharide (LPS) levels, an effect subsequent to improved gut microbiota as expressed by modulation of the Gram-negative bacteria Proteobacteria, as well as Firmicutes and Bacteroidetes. This study suggests that nutraceutical supplementation of HFD-fed rats with BPE and BMP or with their combination product leads to restored gut microbiota, an effect associated with lipoprotein size re-arrangement and better lipidaemic and metabolic profiles.


Asunto(s)
Dieta Alta en Grasa , Microbioma Gastrointestinal , Animales , Ratas , Dieta Alta en Grasa/efectos adversos , Grasas de la Dieta , Lipoproteínas , Extractos Vegetales/farmacología
17.
Int J Mol Sci ; 24(15)2023 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-37569352

RESUMEN

A great deal of evidence has revealed an important link between gut microbiota and the heart. In particular, the gut microbiota plays a key role in the onset of cardiovascular (CV) disease, including heart failure (HF). In HF, splanchnic hypoperfusion causes intestinal ischemia resulting in the translocation of bacteria and their metabolites into the blood circulation. Among these metabolites, the most important is Trimethylamine N-Oxide (TMAO), which is responsible, through various mechanisms, for pathological processes in different organs and tissues. In this review, we summarise the complex interaction between gut microbiota and CV disease, particularly with respect to HF, and the possible strategies for influencing its composition and function. Finally, we highlight the potential role of TMAO as a novel prognostic marker and a new therapeutic target for HF.


Asunto(s)
Enfermedades Cardiovasculares , Microbioma Gastrointestinal , Insuficiencia Cardíaca , Humanos , Metilaminas/metabolismo , Insuficiencia Cardíaca/metabolismo
18.
Acta Diabetol ; 60(11): 1441-1448, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37401947

RESUMEN

Hyperglycemia strongly affects endothelial function and activation, which in turn increases the risk of atherosclerotic cardiovascular disease. Among pharmacotherapies aimed at lowering blood glucose levels, glucagon-like peptide 1 receptor agonists (GLP-1RA) represent a class of drugs involved in the improvement of the endothelium damage and the progression of cardiovascular diseases. They show antihypertensive and antiatherosclerotic actions due at least in part to direct favorable actions on the coronary vascular endothelium, such as oxidative stress reduction and nitric oxide increase. However, cumulative peripheral indirect actions could also contribute to the antiatherosclerotic functions of GLP-1/GLP-1R agonists, including metabolism and gut microbiome regulation. Therefore, further research is necessary to clarify the specific role of this drug class in the management of cardiovascular disease and to identify specific cellular targets involved in the protective signal transduction. In the present review, we provide an overview of the effects of GLP-1RAs treatment on cardiovascular disease with particular attention on potential molecular mechanisms involving endothelium function on formation and progression of atherosclerotic plaque.


Asunto(s)
Enfermedades Cardiovasculares , Diabetes Mellitus Tipo 2 , Humanos , Hipoglucemiantes/uso terapéutico , Endotelio Vascular/metabolismo , Receptor del Péptido 1 Similar al Glucagón/agonistas
19.
Int J Mol Sci ; 24(13)2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37446157

RESUMEN

Atherosclerotic cardiovascular disease is the most common cause of morbidity and death worldwide. Recent studies have demonstrated that this chronic inflammatory disease of the arterial wall can be controlled through the modulation of immune system activity. Many patients with cardiovascular disease remain at elevated risk of recurrent events despite receiving current, state-of-the-art preventive medical treatment. Much of this residual risk is attributed to inflammation. Therefore, finding new treatment strategies for this category of patients became of common interest. This review will discuss the experimental and clinical data supporting the possibility of developing immune-based therapies for lowering cardiovascular risk, explicitly focusing on vaccination strategies.


Asunto(s)
Aterosclerosis , Inmunomodulación , Humanos , Aterosclerosis/inmunología , Aterosclerosis/prevención & control , Aterosclerosis/terapia , Factores de Riesgo de Enfermedad Cardiaca , Inflamación , Vacunación/tendencias , Inmunidad Innata/inmunología , Inmunidad Adaptativa/inmunología , Inmunidad Humoral/inmunología , Autoantígenos/inmunología , Ensayos Clínicos como Asunto , Vacunas/inmunología , Vacunas/uso terapéutico
20.
Diagnostics (Basel) ; 13(14)2023 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-37510100

RESUMEN

Middle-aged adults can start to be affected by some arterial diseases (ADs), such as abdominal aortic or popliteal artery aneurysms, lower extremity arterial disease, internal carotid, or renal artery or subclavian artery stenosis. These vasculopathies are often asymptomatic or paucisymptomatic before manifesting themselves with dramatic complications. Therefore, early detection of ADs is fundamental to reduce the risk of major adverse cardiovascular and limb events. Furthermore, ADs carry a high correlation with silent coronary artery disease (CAD). This study focuses on the most common ADs, in the attempt to summarize some key points which should selectively drive screening. Since the human and economic possibilities to instrumentally screen wide populations is not evident, deep knowledge of semeiotics and careful anamnesis must play a central role in our daily activity as physicians. The presence of some risk factors for atherosclerosis, or an already known history of CAD, can raise the clinical suspicion of ADs after a careful clinical history and a deep physical examination. The clinical suspicion must then be confirmed by a first-level ultrasound investigation and, if so, adequate treatments can be adopted to prevent dreadful complications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...