Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 100
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Chem Phys ; 160(22)2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38856059

RESUMEN

The development and technological applications of molecular spin systems require versatile experimental techniques to characterize and control their static and dynamic magnetic properties. In the latter case, bulk spectroscopic and magnetometric techniques, such as AC magnetometry and pulsed electron paramagnetic resonance, are usually employed, showing high sensitivity, wide dynamic range, and flexibility. They are based on creating a nonequilibrium state either by changing the magnetic field or by applying resonant microwave radiation. Another possible source of perturbation is a laser pulse that rapidly heats the sample. This approach has proven to be one of the most useful techniques for studying the kinetics and mechanism of chemical and biochemical reactions. Inspired by these works, we propose an inductive detection of temperature-induced magnetization dynamics as applied to the study of molecular spin systems and describe the general design and construction of a particular induction probehead, taking into account the constraints imposed by the cryostat and electromagnet. To evaluate the performance, several coordination compounds of VO2+, Co2+, and Dy3+ were investigated using low-energy pulses of a terahertz free electron laser of the Novosibirsk free electron laser facility as a heat source. All measured magnetization dynamics were qualitatively or quantitatively described using a proposed basic theoretical model and compared with the data obtained by alternating current magnetometry. Based on the results of the research, the possible scope of applications of inductive detection and its advantages and disadvantages in comparison with standard methods are discussed.

2.
J Am Chem Soc ; 146(19): 13666-13675, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38709144

RESUMEN

High-spin organic tetraradicals with significant intramolecular exchange interactions have high potential for advanced technological applications and fundamental research, but examples reported to date exhibit limited stability and processability. In this work, we designed the first tetraradical based on an oxoverdazyl core and nitronyl nitroxide radicals and successfully synthesized it using a palladium-catalyzed cross-coupling reaction of an oxoverdazyl radical bearing three iodo-phenylene moieties with a gold(I) nitronyl nitroxide-2-ide complex in the presence of a recently developed efficient catalytic system. The molecular and crystal structures of the tetraradical were confirmed by single crystal X-ray diffraction analysis. The tetraradical possesses good thermal stability with decomposition onset at ∼125 °C in an inert atmosphere; in a toluene solution upon prolonged heating at 90 °C in air, no decomposition was observed. The resulting unique verdazyl-nitroxide conjugate was thoroughly studied using a range of experimental and theoretical techniques, such as SQUID magnetometry of polycrystalline powders, EPR spectroscopy in various matrices, cyclic voltammetry, and high-level quantum chemical calculations. All collected data confirm the high thermal stability of the resulting tetraradical and quintet multiplicity of its ground state, which makes the synthesis of this important paramagnet a new milestone in the field of creating high-spin systems.

3.
Chem Sci ; 15(14): 5268-5276, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38577353

RESUMEN

Metal-organic frameworks (MOFs) draw increasing attention as nanoenvironments for chemical reactions, especially in the field of catalysis. Knowing the specifics of MOF cavities is decisive in many of these cases; yet, obtaining them in situ remains very challenging. We report the first direct assessment of the apparent polarity and solvent organization inside MOF cavities using a dedicated structurally flexible spin probe. A stable ß-phosphorylated nitroxide radical was incorporated into the cavities of a prospective MOF ZIF-8 in trace amounts. The spectroscopic properties of this probe depend on local polarity, structuredness, stiffness and cohesive pressure and can be precisely monitored by Electron Paramagnetic Resonance (EPR) spectroscopy. Using this approach, we have demonstrated experimentally that the cavities of bare ZIF-8 are sensed by guest molecules as highly non-polar inside. When various alcohols fill the cavities, remarkable self-organization of solvent molecules is observed leading to a higher apparent polarity in MOFs compared to the corresponding bulk alcohols. Accounting for such nanoorganization phenomena can be crucial for optimization of chemical reactions in MOFs, and the proposed methodology provides unique routes to study MOF cavities inside in situ, thus aiding in their various applications.

4.
Chemistry ; 30(8): e202303456, 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-37988241

RESUMEN

High-spin organic tetraradicals with significant intramolecular exchange interactions have high potential for advanced technological applications and fundamental research, but those synthesized to date possess limited stability and processability. In this work, we have designed a tetraradical based on the Blatter's radical and nitronyl nitroxide radical moieties and successfully synthesized it by using the palladium-catalyzed cross-coupling reaction of a triiodo-derivative of the 1,2,4-benzotriazinyl radical with gold(I) nitronyl nitroxide-2-ide complex in the presence of a newly developed efficient catalytic system. The molecular and crystal structure of the tetraradical was confirmed by X-ray diffraction analysis. The tetraradical possesses good thermal stability with decomposition onset at ∼150 °C under an inert atmosphere and exhibits reversible redox waves at -0.54 and 0.45 V versus Ag/AgCl. The magnetic properties of the tetraradical were characterized by SQUID magnetometry of polycrystalline powders and EPR spectroscopy in various matrices. The collected data, analyzed by using high-level quantum chemical calculations, confirmed that the tetraradical has a triplet ground state and a nearby excited quintet state. The unique high stability of the prepared triazinyl-nitronylnitroxide tetraradical is a new milestone in the field of creating high-spin systems.

5.
Polymers (Basel) ; 15(20)2023 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-37896368

RESUMEN

The development of efficient and reliable sensors operating at room temperature is essential to advance the application of terahertz (THz) science and technology. Pyroelectric THz detectors are among the best candidates, taking into account their variety, outstanding performance, ease of fabrication, and robustness. In this work, we compare the performance of six different detectors, based on either LaTiO3 crystal or different polymeric films, using monochromatic radiation of the Novosibirsk Free Electron Laser facility (NovoFEL) in the frequency range of 0.9-2.0 THz. The main characteristics, including noise equivalent power and frequency response, were determined for all of them. Possible reasons for the differences in the obtained characteristics are discussed on the basis of the main physicochemical characteristics and optical properties of the sensitive area. At least three detectors showed sufficient sensitivity to monitor the shape and duration of the THz macropulses utilizing only a small fraction of the THz radiation from the primary beam. This capability is crucial for accurate characterization of THz radiation during the main experiment at various specialized endstations at synchrotrons and free electron lasers. As an example of such characterization, the typical stability of the average NovoFEL radiation power at the beamline of the electron paramagnetic resonance endstation was investigated.

6.
Phys Chem Chem Phys ; 25(33): 22455-22466, 2023 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-37581249

RESUMEN

The binding of G-quadruplex structures (G4s) with photosensitizers is of considerable importance in medicinal chemistry and drug discovery due to their promising potential in photodynamic therapy applications. G4s can experience structural changes as a result of ligand interactions and light exposure. Understanding these modifications is essential to uncover the fundamental biological roles of the complexes and optimize their therapeutic potential. The structural diversity of G4s makes it challenging to study their complexes with ligands, necessitating the use of various complementary methods to fully understand these interactions. In this study, we introduce, for the first time, the application of laser-induced dipolar EPR as a method to characterize G-quadruplex DNA complexes containing photosensitizers and to investigate light-induced structural modifications in these systems. To demonstrate the feasibility of this approach, we studied complexes of the human telomeric G-quadruplex (HTel-22) with cationic 5,10,15,20-tetrakis(1-methyl-4-pyridinio) porphyrin tetra(p-toluenesulfonate) (TMPyP4). In addition to showcasing a new methodology, we also aimed to provide insights into the mechanisms underlying photoinduced HTel-22/TMPyP4 structural changes, thereby aiding in the advancement of approaches targeting G4s in photodynamic therapy. EPR revealed G-quadruplex unfolding and dimer formation upon light exposure. Our findings demonstrate the potential of EPR spectroscopy for examining G4 complexes with photosensitizers and contribute to a better understanding of G4s' interactions with ligands under light.


Asunto(s)
G-Cuádruplex , Porfirinas , Humanos , Fármacos Fotosensibilizantes , Ligandos , Porfirinas/química , ADN/química
7.
Nanomaterials (Basel) ; 13(15)2023 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-37570482

RESUMEN

Ionic liquids (ILs) form a variety of nanostructures due to their amphiphilic nature. Recently, unusual structural phenomena have been found in glassy ILs near their glass transition temperatures; however, in all studied cases, IL cations and anions were in the form of separate moieties. In this work, we investigate for the first time such structural anomalies in zwitterionic IL glasses (ZILs), where the cation and anion are bound in a single molecule. Such binding reasonably restricts mutual diffusion of cations and anions, leading to modification of nano-ordering and character of structural anomalies in these glassy nanomaterials, as has been investigated using Electron Paramagnetic Resonance (EPR) spectroscopy. In particular, the occurrence of structural anomalies in ZIL glasses was revealed, and their characteristic temperatures were found to be higher compared to common ILs of a similar structure. Altogether, this work broadens the scope of structural anomalies in ionic liquid glasses and indicates new routes to tune their properties.

8.
Chemistry ; 29(61): e202302137, 2023 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-37553294

RESUMEN

Bodipy (BDP)-perylenebisimide (PBI) donor-acceptor dyads/triad were prepared to study the spin-orbit charge-transfer intersystem crossing (SOCT-ISC). For BDP-PBI-3, in which BDP was attached at the imide position of PBI, higher singlet oxygen quantum yield (ΦΔ =85 %) was observed than the bay-substituted derivative BDP-PBI-1 (ΦΔ =30 %). Femtosecond transient absorption spectra indicate slow Förster resonance energy transfer (FRET; 40.4 ps) and charge separation (CS; 1.55 ns) in BDP-PBI-3, while for BDP-PBI-1, CS takes 2.8 ps. For triad BDP-PBI-2, ultrafast FRET (149 fs) and CS (4.7 ps) process were observed, the subsequent charge recombination (CR) takes 5.8 ns and long-lived 3 PBI* (179.8 µs) state is populated. Nanosecond transient absorption spectra of BDP-PBI-3 show that the CR gives upper triplet excited state (3 BDP*) and subsequently, via a slow intramolecular triplet energy transfer (14.5 µs), the 3 PBI* state is finally populated, indicating that upper triplet state is involved in SOCT-ISC. Time-resolved electron paramagnetic resonance spectroscopy revealed that both radical pair ISC (RP ISC) and SOCT-ISC contribute to the ISC. A rare electron spin polarization of (e, e, e, e, e, e) was observed for the triplet state formed via the RP ISC mechanism, due to the S-T+1 /T0 states mixing.

9.
Dalton Trans ; 52(27): 9337-9345, 2023 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-37350573

RESUMEN

Copper(II)-nitroxide based Cu(hfac)2LR compounds exhibit unusual magnetic behavior that can be induced by various stimuli. In many aspects, the magnetic phenomena observed in Cu(hfac)2LR are similar to classical spin-crossover behavior. However, these phenomena originate from polynuclear exchange-coupled spin clusters Cu2+-O˙-N< or >N-˙O-Cu2+-O˙-N<. Such peculiarities may result in additional multifunctionality of Cu(hfac)2LR compounds, making them promising materials for spintronic applications. Herein, we investigate the Cu(hfac)2LMeMe material, which demonstrates a three-step temperature-induced magnetostructural transition between high-temperature, low-temperature, and intermediate states, as revealed by magnetometry. Two main steps were resolved using variable-temperature Fourier-transform infrared and Q-band electron paramagnetic resonance (EPR) spectroscopies. The intermediate-temperature states (∼40-90 K) are characterized by the coexistence of two types of copper(II)-nitroxide clusters, corresponding to the low-temperature and high-temperature phases. High-field EPR experiments revealed the effect of partial alignment of Cu(hfac)2LMeMe microcrystals in a strong (>20 T) magnetic field. This effect was used to unveil the structural features of the low-temperature phase of Cu(hfac)2LMeMe, which were inaccessible using single-crystal X-ray diffraction (XRD) technique. In particular, high-field EPR allowed us to determine the relative direction of the Jahn-Teller axes in CuO6 and CuO4N2 units.

10.
Phys Chem Chem Phys ; 25(20): 13846-13853, 2023 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-37161549

RESUMEN

Probes sensitive to mechanical stress are in demand for the analysis of pressure distribution in materials, and the design of pressure sensors based on metal-organic frameworks (MOFs) is highly promising due to their structural tunability. We report a new pressure-sensing material, which is based on the UiO-66 framework with trace amounts of a spin probe (0.03 wt%) encapsulated in cavities. To obtain this material, we developed an approach for encapsulation of stable nitroxide radical TEMPO ((2,2,6,6-tetramethylpiperidin-1-yl)oxyl) into the micropores of UiO-66 during its solvothermal synthesis. Pressure read-out using electron paramagnetic resonance (EPR) spectroscopy allows monitoring the degradation of the defected MOF structure upon pressurization, where full collapse of pores occurs at as low a pressure as 0.13 GPa. The developed methodology can be used in and ex situ and provides sensitive tools for non-destructive mapping of pressure effects in various materials.

11.
Phys Chem Chem Phys ; 25(17): 11971-11980, 2023 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-37070235

RESUMEN

Photo-excited triplet states represent a new class of spin labels in pulse electron paramagnetic resonance (EPR), attracting increasing attention because of their unique spectroscopic properties. Despite certain advantages, the use of photo-labels has also some challenges, e.g. low repetition rates due to technical laser-related limitations and intrinsic properties of the labels. The application of additional pulse trains for multiple refocusing of the electron spin echo and integration of all observed echoes can significantly enhance sensitivity at a given repetition rate. In this work, we demonstrate that the use of Carr-Parcel-Meiboom-Gill (CPMG) blocks followed by multiple echo integration is a promising route for sensitivity gain in pulsed EPR utilizing photo-excited triplet states, including light-induced pulsed dipolar spectroscopy (LiPDS). The reduction of accumulation time by a factor of 5.3 has been achieved using a commercial pulsed EPR spectrometer with the implementation of a CPMG block and an external digitizer. The methodology of using CPMG refocusing with multiple echo integration in light-induced pulsed EPR experiments is discussed, aiding future applications of this approach in LiPDS experiments.

12.
ACS Appl Mater Interfaces ; 15(4): 5191-5197, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36652301

RESUMEN

Nitrogen oxides are adverse poisonous gases present in the atmosphere and having detrimental effects on the human health and environment. In this work, we propose a new type of mesoporous materials capable of capturing nitrogen monoxide (NO) from air. The designed material combines the robust Santa Barbara Amorphous-15 silica scaffold and ultrastable Blatter-type radicals acting as NO traps. Using in situ electron paramagnetic resonance spectroscopy, we demonstrate that NO capture from air is selective and reversible at practical conditions, thus making Blatter radical-decorated silica highly promising for environmental applications.

13.
Int J Mol Sci ; 23(23)2022 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-36499187

RESUMEN

Understanding the heterogeneous nano/microscopic structures of various organic glasses is fundamental and necessary for many applications. Recently, unusual structural phenomena have been observed experimentally in various organic glasses near their glass transition temperatures (Tg), including dibutyl phthalate (DBP). In particular, the librational motion of radical probe in the glass is progressively suppressed upon temperature increase. In this work, we report in-depth molecular dynamics studies of structural anomalies in DBP glass, that revealed insights into the general mechanism of these phenomena. In particular, we have evidenced that the two types of solvation within alkyl chains coexist, allowing only small-angle wobbling of the solute molecule (TEMPO radical), and another favouring large-angle rotations. The former solvation assumes constrained location of the solute near carboxyl groups of DBP, while the latter is coupled to the concerted movement of butyl chains. Remarkably, excellent qualitative and quantitative agreement with previous experimental results were obtained. As such, we are certain that the above-mentioned dynamic phenomena explain the intriguing structural anomalies observed in DBP and some other glasses in the vicinity of Tg.


Asunto(s)
Dibutil Ftalato , Simulación de Dinámica Molecular , Temperatura de Transición , Vidrio/química , Temperatura
14.
Molecules ; 27(16)2022 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-36014356

RESUMEN

Active Pharmaceutical Ingredient-Ionic Liquids (API-ILs) draw increasing interest as a particular class of ILs that possess unusual physicochemical properties along with simultaneous potentials for pharmaceutical applications. Although nanostructuring phenomena were actively investigated in common ILs, their studies in API-ILs are scarce so far. In this work, using the complex methodology of Electron Paramagnetic Resonance (EPR) and dissolved spin probes, we investigate nanostructuring phenomena in a series of API-ILs: [Cnmim][Ibu], [Cnmim][Gly], and [Cnmim][Sal] with n = 2, 4, and 6, respectively. We reveal similar trends for API-ILs and common ILs, as well as peculiarities inherent to the studied API-ILs. Unusual behavior observed for [Cnmim][Ibu] has been assigned to the presence of a non-polar fragment in the [Ibu]- anion, which leads to the formation of more complex nanostructures around the radical compared to common ILs. Understanding general trends in the formation of such self-organized molecular structures is of fundamental interest and importance for applying API-ILs.


Asunto(s)
Líquidos Iónicos , Nanoestructuras , Espectroscopía de Resonancia por Spin del Electrón , Líquidos Iónicos/química , Estructura Molecular , Nanoestructuras/química , Preparaciones Farmacéuticas
15.
Molecules ; 27(10)2022 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-35630717

RESUMEN

Zeolite imidazolate framework-8 (ZIF-8) is a promising platform for drug delivery, and information regarding the stability of ZIF-8 nanoparticles in cell culture media is essential for proper interpretation of in vitro experimental results. In this work, we report a quantitative investigation of the ZIF-8 nanoparticle's stability in most common cell culture media. To this purpose, ZIF-8 nanoparticles containing sterically shielded nitroxide probes with high resistance to reduction were synthesized and studied using electron paramagnetic resonance (EPR). The degradation of ZIF-8 in cell media was monitored by tracking the cargo leakage. It was shown that nanoparticles degrade at least partially in all studied media, although the degree of cargo leakage varies widely. We found a strong correlation between the amount of escaped cargo and total concentration of amino acids in the environment. We also established the role of individual amino acids in ZIF-8 degradation. Finally, 2-methylimidazole preliminary dissolved in cell culture media partially inhibits the degradation of ZIF-8 nanoparticles. The guidelines for choosing the proper cell culture medium for the in vitro study of ZIF-8 nanoparticles have been formulated.


Asunto(s)
Nanopartículas , Zeolitas , Aminoácidos , Técnicas de Cultivo de Célula , Sistemas de Liberación de Medicamentos , Nanopartículas/química , Zeolitas/química
16.
Chemistry ; 28(37): e202200510, 2022 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-35438811

RESUMEN

We prepared an orthogonal compact electron-donor (phenoxazine, PXZ)-acceptor (naphthalimide, NI) dyad (NI-PXZ), to study the photophysics of the thermally-activated delayed fluorescence (TADF), which has a luminescence lifetime of 16.4 ns (99.2 %)/17.0 µs (0.80 %). A weak charge transfer (CT) absorption band was observed for the dyad, indicating non-negligible electronic coupling between the donor and acceptor at the ground state. Femtosecond transient absorption spectroscopy shows a fast charge separation (CS) (ca. 2.02∼2.72 ps), the majority of the singlet CS state is short-lived, especially in polar solvents (τCR = 10.3 ps in acetonitrile, vs. 1.83 ns in toluene, 7.81 ns in n-hexane). Nanosecond transient absorption spectroscopy detects a long-lived transient species in n-hexane, which is with a mixed triplet local excited state (3 LE) and charge separated state (3 CS), the lifetime is 15.4 µs. In polar solvents, such as tetrahydrofuran and acetonitrile, a neat 3 CS state was observed, whose lifetimes are 226 ns and 142 ns, respectively. Time-resolved electron paramagnetic resonance (TREPR) spectra indicate the existence of strongly spin exchanged 3 LE/3 CT states, with the effective zero field splitting (ZFS) |D| and |E| parameters of 1484 MHz and 109 MHz, respectively, much smaller than that of the native 3 NI state (2475 and 135 MHz). It is rare but solid experimental evidence that a closely-lying 3 LE state is crucial for occurrence of TADF and this 3 LE state is an essential intermediate state to facilitate reverse intersystem crossing in TADF systems.

17.
Phys Chem Chem Phys ; 24(7): 4475-4484, 2022 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-35113093

RESUMEN

Triplet states of photoexcited organic molecules are promising spin labels with advanced spectroscopic properties for pulsed dipolar electron paramagnetic resonance (PD EPR) spectroscopy. Recently proposed triplet fullerene labels have shown great potential for double electron-electron resonance (DEER) distance measurements as "observer spins" due to a high quantum yield of the triplet state, hyperpolarization and relatively narrow EPR spectra. Here, we demonstrate the applicability of fullerene labels to other PD EPR techniques, such as relaxation induced dipolar modulation enhancement (RIDME) and laser induced magnetic dipolar spectroscopy (LaserIMD). In particular, a specific contaminating signal in LaserIMD experiments was observed, explained and mitigated. Comparative analyses of the signal-to-noise (SNR) ratios were performed for all employed methods. DEER on the fullerene-triarylmethyl pair shows the best performance, which allows state-of-the-art DEER acquisition at 100 nM with a SNR of ∼35 within reasonable 42 hours.


Asunto(s)
Fulerenos , Espectroscopía de Resonancia por Spin del Electrón/métodos , Marcadores de Spin
18.
Int J Mol Sci ; 22(21)2021 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-34769336

RESUMEN

Many ionic liquids (ILs) can be mixed with water, forming either true solutions or emulsions. This favors their applications in many respects, but at the same time might strongly alter their physicochemical properties. A number of methods exist for studying the macroscopic properties of such mixtures, whereas understanding their characteristics at micro/nanoscale is rather challenging. In this work we investigate microscopic properties, such as viscosity and local structuring, in binary water mixtures of IL [Bmim]BF4 in liquid and glassy states. For this sake, we use continuous wave and pulse electron paramagnetic resonance (EPR) spectroscopy with dedicated spin probes, located preferably in IL-rich domains or distributed in IL- and water-rich domains. We demonstrate that the glassy-state nanostructuring of IL-rich domains is very similar to that in neat ILs. At the same time, in liquid state the residual water makes local viscosity in IL-rich domains noticeably different compared to neat ILs, even though the overwhelming amount of water is contained in water-rich domains. These results have to be taken into account in various applications of IL-water mixtures, especially in those cases demanding the combinations of optimum micro- and macroscopic characteristics.


Asunto(s)
Espectroscopía de Resonancia por Spin del Electrón/métodos , Líquidos Iónicos/química , Micelas , Agua/química , Enlace de Hidrógeno , Interacciones Hidrofóbicas e Hidrofílicas , Viscosidad
19.
Molecules ; 26(19)2021 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-34641371

RESUMEN

Ionic liquid (IL) glasses have recently drawn much interest as unusual media with unique physicochemical properties. In particular, anomalous suppression of molecular mobility in imidazolium IL glasses vs. increasing temperature was evidenced by pulse Electron Paramagnetic Resonance (EPR) spectroscopy. Although such behavior has been proven to originate from dynamics of alkyl chains of IL cations, the role of electron spin relaxation induced by surrounding protons still remains unclear. In this work we synthesized two deuterated imidazolium-based ILs to reduce electron-nuclear couplings between radical probe and alkyl chains of IL, and investigated molecular mobility in these glasses. The obtained trends were found closely similar for deuterated and protonated analogs, thus excluding the relaxation-induced artifacts and reliably demonstrating structural grounds of the observed anomalies in heterogeneous IL glasses.

20.
Comput Struct Biotechnol J ; 19: 4702-4710, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34504663

RESUMEN

The conformation of mRNA in the region of the human 80S ribosome decoding site was monitored using 11-mer mRNA analogues that bore nitroxide spin labels attached to the terminal nucleotide bases. Intramolecular spin-spin distances were measured by DEER/PELDOR spectroscopy in model complexes mimicking different states of the 80S ribosome during elongation and termination of translation. The measurements revealed that in all studied complexes, mRNA exists in two alternative conformations, whose ratios are different in post-translocation, pre-translocation and termination complexes. We found that the presence of a tRNA molecule at the ribosomal A site decreases the relative share of the more extended mRNA conformation, whereas the binding of eRF1 (alone or in a complex with eRF3) results in the opposite effect. In the termination complexes, the ratios of mRNA conformations are practically the same, indicating that a part of mRNA bound in the ribosome channel does not undergo significant structural alterations in the course of completion of the translation. Our results contribute to the understanding of mRNA molecular dynamics in the mammalian ribosome channel during translation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...