Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Vet Sci ; 25(2): e23, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38568825

RESUMEN

The widespread use of antimicrobials causes antibiotic resistance in bacteria. The use of butyric acid and its derivatives is an alternative tactic. This review summarizes the literature on the role of butyric acid in the body and provides further prospects for the clinical use of its derivatives and delivery methods to the animal body. Thus far, there is evidence confirming the vital role of butyric acid in the body and the effectiveness of its derivatives when used as animal medicines and growth stimulants. Butyric acid salts stimulate immunomodulatory activity by reducing microbial colonization of the intestine and suppressing inflammation. Extraintestinal effects occur against the background of hemoglobinopathy, hypercholesterolemia, insulin resistance, and cerebral ischemia. Butyric acid derivatives inhibit histone deacetylase. Aberrant histone deacetylase activity is associated with the development of certain types of cancer in humans. Feed additives containing butyric acid salts or tributyrin are used widely in animal husbandry. They improve the functional status of the intestine and accelerate animal growth and development. On the other hand, high concentrations of butyric acid stimulate the apoptosis of epithelial cells and disrupt the intestinal barrier function. This review highlights the biological activity and the mechanism of action of butyric acid, its salts, and esters, revealing their role in the treatment of various animal and human diseases. This paper also discussed the possibility of using butyric acid and its derivatives as surface modifiers of enterosorbents to obtain new drugs with bifunctional action.


Asunto(s)
Antiinfecciosos , Sales (Química) , Humanos , Animales , Ácido Butírico/farmacología , Ácido Butírico/uso terapéutico , Células Epiteliales , Histona Desacetilasas
2.
Biochemistry (Mosc) ; 89(3): 574-582, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38648774

RESUMEN

Rabies is a zoonotic disease with high lethality. Most human deaths are associated with the bites received from dogs and cats. Vaccination is the most effective method of preventing rabies disease in both animals and humans. In this study, the ability of an adjuvant based on recombinant Salmonella typhimurium flagellin to increase protective activity of the inactivated rabies vaccine in mice was evaluated. A series of inactivated dry culture vaccine for dogs and cats "Rabikan" (strain Shchelkovo-51) with addition of an adjuvant at various dilutions were used. The control preparation was a similar series of inactivated dry culture vaccine without an adjuvant. Protective activity of the vaccine preparations was evaluated by the NIH potency test, which is the most widely used and internationally recommended method for testing effectiveness of the inactivated rabies vaccines. The value of specific activity of the tested rabies vaccine when co-administered with the adjuvant was significantly higher (48.69 IU/ml) than that of the vaccine without the adjuvant (3.75 IU/ml). Thus, recombinant flagellin could be considered as an effective adjuvant in the composition of future vaccine preparations against rabies virus.


Asunto(s)
Adyuvantes Inmunológicos , Flagelina , Vacunas Antirrábicas , Rabia , Vacunas de Productos Inactivados , Vacunas Antirrábicas/inmunología , Vacunas Antirrábicas/administración & dosificación , Animales , Flagelina/inmunología , Ratones , Rabia/prevención & control , Rabia/inmunología , Vacunas de Productos Inactivados/inmunología , Perros , Virus de la Rabia/inmunología , Salmonella typhimurium/inmunología , Femenino , Gatos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...