Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Plant Sci ; 331: 111675, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36931565

RESUMEN

AtCPK4 and AtCPK11 are Arabidopsis thaliana Ca2+-dependent protein kinase (CDPK) paralogs that have been reported to positively regulate abscisic acid (ABA) signal transduction by phosphorylating ABA-responsive transcription factor-4 (AtABF4). By contrast, RcCDPK1, their closest Ricinus communis ortholog, participates in the control of anaplerotic carbon flux in developing castor oil seeds by catalyzing inhibitory phosphorylation of bacterial-type phosphoenolpyruvate carboxylase at Ser451. LC-MS/MS revealed that AtCPK4 and RcCDPK1 transphosphorylated several common, conserved residues of AtABF4 and its castor ortholog, TRANSCRIPTION FACTOR RESPONSIBLE FOR ABA REGULATON. Arabidopsis atcpk4/atcpk11 mutants displayed an ABA-insensitive phenotype that corroborated the involvement of AtCPK4/11 in ABA signaling. A kinase-client assay was employed to identify additional AtCPK4/RcCDPK1 targets. Both CDPKs were separately incubated with a library of 2095 peptides representative of Arabidopsis protein phosphosites; five overlapping targets were identified including PLANT INTRACELLULAR RAS-GROUP-RELATED LEUCINE-RICH REPEAT PROTEIN-9 (AtPIRL9) and the E3-ubiquitin ligase ARABIDOPSIS TOXICOS EN LEVADURA 6 (AtATL6). AtPIRL9 and AtATL6 residues phosphorylated by AtCPK4/RcCDPK1 conformed to a CDPK recognition motif that was conserved amongst their respective orthologs. Collectively, this study provides evidence for novel AtCPK4/RcCDPK1 substrates, which may help to expand regulatory networks linked to Ca2+- and ABA-signaling, immune responses, and central carbon metabolism.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Ácido Abscísico/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Cromatografía Liquida , Regulación de la Expresión Génica de las Plantas , Germinación/genética , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Ricinus/genética , Ricinus/metabolismo , Espectrometría de Masas en Tándem , Factores de Transcripción/metabolismo , Calcio/metabolismo
2.
Nat Commun ; 11(1): 6191, 2020 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-33273474

RESUMEN

In plants, light-dependent activation of de novo fatty acid synthesis (FAS) is partially mediated by acetyl-CoA carboxylase (ACCase), the first committed step for this pathway. However, it is not fully understood how plants control light-dependent FAS regulation to meet the cellular demand for acyl chains. We report here the identification of a gene family encoding for three small plastidial proteins of the envelope membrane that interact with the α-carboxyltransferase (α-CT) subunit of ACCase and participate in an original mechanism restraining FAS in the light. Light enhances the interaction between carboxyltransferase interactors (CTIs) and α-CT, which in turn attenuates carbon flux into FAS. Knockouts for CTI exhibit higher rates of FAS and marked increase in absolute triacylglycerol levels in leaves, more than 4-fold higher than in wild-type plants. Furthermore, WRINKLED1, a master transcriptional regulator of FAS, positively regulates CTI1 expression by direct binding to its promoter. This study reveals that in addition to light-dependent activation, "envelope docking" of ACCase permits fine-tuning of fatty acid supply during the plant life cycle.


Asunto(s)
Acetil-CoA Carboxilasa/metabolismo , Arabidopsis/metabolismo , Ácidos Grasos/biosíntesis , Membranas Intracelulares/metabolismo , Acetatos/metabolismo , Acetil-CoA Carboxilasa/química , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Radioisótopos de Carbono , Regulación del Desarrollo de la Expresión Génica , Luz , Simulación del Acoplamiento Molecular , Plastidios/metabolismo , Regiones Promotoras Genéticas/genética , Unión Proteica , Dominios Proteicos , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Protoplastos/metabolismo
3.
FEBS Lett ; 592(15): 2525-2532, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-30025148

RESUMEN

In plants, trehalose 6-phosphate (T6P) is a key signaling metabolite that functions as both a signal and negative feedback regulator of sucrose levels. The mode of action by which T6P senses and regulates sucrose is not fully understood. Here, we demonstrate that the sucrolytic activity of RcSUS1, the dominant sucrose synthase isozyme expressed in developing castor beans, is allosterically inhibited by T6P. The feedback inhibition of SUS by T6P may contribute to the control of sink strength and sucrolytic flux in heterotrophic plant tissues.


Asunto(s)
Glucosiltransferasas/metabolismo , Glucólisis , Ricinus communis/metabolismo , Sacarosa/metabolismo , Fosfatos de Azúcar/fisiología , Trehalosa/análogos & derivados , Ricinus communis/enzimología , Ricinus communis/crecimiento & desarrollo , Retroalimentación Fisiológica/efectos de los fármacos , Glucólisis/efectos de los fármacos , Redes y Vías Metabólicas/efectos de los fármacos , Desarrollo de la Planta/fisiología , Fosfatos de Azúcar/farmacología , Trehalosa/metabolismo , Trehalosa/farmacología , Trehalosa/fisiología
4.
FEBS Lett ; 591(23): 3872-3880, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-29110302

RESUMEN

The sucrose synthase (SUS) interactome of developing castor oilseeds (COS; Ricinus communis) was assessed using coimmunoprecipitation (co-IP) with anti-(COS RcSUS1)-IgG followed by proteomic analysis. A 41-kDa polypeptide (p41) that coimmunoprecipitated with RcSUS1 from COS extracts was identified as reversibly glycosylated polypeptide-1 (RcRGP1) by LC-MS/MS and anti-RcRGP1 immunoblotting. Reciprocal Far-western immunodot blotting corroborated the specific interaction between RcSUS1 and RcRGP1. Co-IP using anti-(COS RcSUS1)-IgG and clarified extracts from other developing seeds as well as cluster (proteoid) roots of white lupin and Harsh Hakea consistently recovered 90 kDa SUS polypeptides along with p41/RGP as a SUS interactor. The results suggest that SUS interacts with RGP in diverse sink tissues to channel UDP-glucose derived from imported sucrose into hemicellulose and/or glycoprotein/glycolipid biosynthesis.


Asunto(s)
Glucosiltransferasas/aislamiento & purificación , Proteínas de Plantas/aislamiento & purificación , Ricinus communis/química , Ricinus communis/enzimología , Ricinus/química , Ricinus/enzimología , Far-Western Blotting , Ricinus communis/genética , Glucosiltransferasas/química , Glucosiltransferasas/genética , Glicoproteínas/química , Glicoproteínas/genética , Glicoproteínas/aislamiento & purificación , Glicosilación , Inmunoprecipitación , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/genética , Mapeo de Interacción de Proteínas , Proteómica , Ricinus/genética , Espectrometría de Masas en Tándem
5.
Biochem J ; 473(20): 3667-3682, 2016 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-27512054

RESUMEN

Imported sucrose is cleaved by sucrose synthase (SUS) as a critical initial reaction in the biosynthesis of storage end-products by developing seeds. Although SUS is phosphorylated at a conserved seryl residue by an apparent CDPK (Ca2+-dependent protein kinase) in diverse plant tissues, the functions and mechanistic details of this process remain obscure. Thus, the native CDPK that phosphorylates RcSUS1 (Ricinus communis SUS1) at Ser11 in developing COS (castor oil seeds) was highly purified and identified as RcCDPK2 by MS/MS. Purified RcSUS1-K (-kinase) and heterologously expressed RcCDPK2 catalyzed Ca2+-dependent Ser11 phosphorylation of RcSUS1 and its corresponding dephosphopeptide, while exhibiting a high affinity for free Ca2+ ions [K0.5(Ca2+) < 0.4 µM]. RcSUS1-K activity, RcCDPK2 expression, and RcSUS1 Ser11 phosphorylation peaked during early COS development and then declined in parallel. The elimination of sucrose import via fruit excision triggered RcSUS1 dephosphorylation but did not alter RcSUS1-K activity, suggesting a link between sucrose signaling and posttranslational RcCDPK2 control. Both RcCDPK2-mCherry and RcSUS1-EYFP co-localized throughout the cytosol when transiently co-expressed in tobacco suspension cells, although RcCDPK2-mCherry was also partially localized to the nucleus. Subcellular fractionation revealed that ∼20% of RcSUS1-K activity associates with microsomal membranes in developing COS, as does RcSUS1. In contrast with RcCDPK1, which catalyzes inhibitory phosphorylation of COS bacterial-type phosphoenolpyruvate carboxylase at Ser451, RcCDPK2 exhibited broad substrate specificity, a wide pH-activity profile centered at pH 8.5, and insensitivity to metabolite effectors or thiol redox status. Our combined results indicate a possible link between cytosolic Ca2+-signaling and the control of photosynthate partitioning during COS development.


Asunto(s)
Aceite de Ricino/metabolismo , Glucosiltransferasas/metabolismo , Proteínas de Plantas/metabolismo , Proteínas Quinasas/metabolismo , Semillas/enzimología , Semillas/metabolismo , Concentración de Iones de Hidrógeno , Microsomas/metabolismo , Fosfoenolpiruvato Carboxilasa/metabolismo , Fosforilación
6.
J Biol Chem ; 289(48): 33412-24, 2014 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-25313400

RESUMEN

Sucrose synthase (SUS) catalyzes the UDP-dependent cleavage of sucrose into UDP-glucose and fructose and has become an important target for improving seed crops via metabolic engineering. A UDP-specific SUS homotetramer composed of 93-kDa subunits was purified to homogeneity from the triacylglyceride-rich endosperm of developing castor oil seeds (COS) and identified as RcSUS1 by mass spectrometry. RcSUS1 transcripts peaked during early development, whereas levels of SUS activity and immunoreactive 93-kDa SUS polypeptides maximized during mid-development, becoming undetectable in fully mature COS. The cytosolic location of the enzyme was established following transient expression of RcSUS1-enhanced YFP in tobacco suspension cells and fluorescence microscopy. Immunological studies using anti-phosphosite-specific antibodies revealed dynamic and high stoichiometric in vivo phosphorylation of RcSUS1 at its conserved Ser-11 residue during COS development. Incorporation of (32)P(i) from [γ-(32)P]ATP into a RcSUS1 peptide substrate, alongside a phosphosite-specific ELISA assay, established the presence of calcium-dependent RcSUS1 (Ser-11) kinase activity. Approximately 10% of RcSUS1 was associated with COS microsomal membranes and was hypophosphorylated relative to the remainder of RcSUS1 that partitioned into the soluble, cytosolic fraction. Elimination of sucrose supply caused by excision of intact pods of developing COS abolished RcSUS1 transcription while triggering the progressive dephosphorylation of RcSUS1 in planta. This did not influence the proportion of RcSUS1 associated with microsomal membranes but instead correlated with a subsequent marked decline in SUS activity and immunoreactive RcSUS1 polypeptides. Phosphorylation at Ser-11 appears to protect RcSUS1 from proteolysis, rather than influence its kinetic properties or partitioning between the soluble cytosol and microsomal membranes.


Asunto(s)
Glucosiltransferasas/metabolismo , Membranas Intracelulares/enzimología , Microsomas/enzimología , Proteínas de Plantas/metabolismo , Ricinus communis/enzimología , Semillas/enzimología , Fosforilación/fisiología , Proteolisis
7.
J Exp Bot ; 65(20): 6097-106, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25170100

RESUMEN

Despite its agronomic importance, the metabolic networks mediating phosphorus (P) remobilization during plant senescence are poorly understood. Highly efficient P remobilization (~85%) from senescing leaves and proteoid roots of harsh hakea (Hakea prostrata), a native 'extremophile' plant of south-western Australia, was linked with striking up-regulation of cell wall-localized and intracellular acid phosphatase (APase) and RNase activities. Non-denaturing PAGE followed by in-gel APase activity staining revealed senescence-inducible 120kDa and 60kDa intracellular APase isoforms, whereas only the 120kDa isoform was detected in corresponding cell wall fractions. Kinetic and immunological properties of the 120kDa and 60kDa APases partially purified from senescing leaves indicated that they are purple acid phosphatases (PAPs). Results obtained with cell wall-targeted hydrolases of harsh hakea were corroborated using Arabidopsis thaliana in which an ~200% increase in cell wall APase activity during leaf senescence was paralleled by accumulation of immunoreactive 55kDa AtPAP26 polypeptides. Senescing leaves of an atpap26 T-DNA insertion mutant displayed a >90% decrease in cell wall APase activity. Previous research established that senescing leaves of atpap26 plants exhibited a similar reduction in intracellular (vacuolar) APase activity, while displaying markedly impaired P remobilization efficiency and delayed senescence. It is hypothesized that up-regulation and dual targeting of PAPs and RNases to the cell wall and vacuolar compartments make a crucial contribution to highly efficient P remobilization that dominates the P metabolism of senescing tissues of harsh hakea and Arabidopsis. To the best of the authors' knowledge, the apparent contribution of cell wall-targeted hydrolases to remobilizing key macronutrients such as P during senescence has not been previously suggested.


Asunto(s)
Arabidopsis/enzimología , Fósforo/metabolismo , Proteínas de Plantas/metabolismo , Proteaceae/enzimología , Fosfatasa Ácida/genética , Fosfatasa Ácida/metabolismo , Arabidopsis/genética , Pared Celular/metabolismo , Senescencia Celular , Citoplasma/metabolismo , Regulación de la Expresión Génica de las Plantas , Glicoproteínas/genética , Glicoproteínas/metabolismo , Modelos Biológicos , Fosfatos/metabolismo , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Proteínas de Plantas/genética , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Proteaceae/genética , Ribonucleasas/genética , Ribonucleasas/metabolismo , Plantones/genética , Plantones/metabolismo , Regulación hacia Arriba , Vacuolas/metabolismo
8.
Plant Physiol ; 161(4): 1634-44, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23407057

RESUMEN

Accumulating evidence indicates important functions for phosphoenolpyruvate (PEP) carboxylase (PEPC) in inorganic phosphate (Pi)-starved plants. This includes controlling the production of organic acid anions (malate, citrate) that are excreted in copious amounts by proteoid roots of nonmycorrhizal species such as harsh hakea (Hakea prostrata). This, in turn, enhances the bioavailability of mineral-bound Pi by solubilizing Al(3+), Fe(3+), and Ca(2+) phosphates in the rhizosphere. Harsh hakea thrives in the nutrient-impoverished, ancient soils of southwestern Australia. Proteoid roots from Pi-starved harsh hakea were analyzed over 20 d of development to correlate changes in malate and citrate exudation with PEPC activity, posttranslational modifications (inhibitory monoubiquitination versus activatory phosphorylation), and kinetic/allosteric properties. Immature proteoid roots contained an equivalent ratio of monoubiquitinated 110-kD and phosphorylated 107-kD PEPC polypeptides (p110 and p107, respectively). PEPC purification, immunoblotting, and mass spectrometry indicated that p110 and p107 are subunits of a 430-kD heterotetramer and that they both originate from the same plant-type PEPC gene. Incubation with a deubiquitinating enzyme converted the p110:p107 PEPC heterotetramer of immature proteoid roots into a p107 homotetramer while significantly increasing the enzyme's activity under suboptimal but physiologically relevant assay conditions. Proteoid root maturation was paralleled by PEPC activation (e.g. reduced Km [PEP] coupled with elevated I50 [malate and Asp] values) via in vivo deubiquitination of p110 to p107, and subsequent phosphorylation of the deubiquitinated subunits. This novel mechanism of posttranslational control is hypothesized to contribute to the massive synthesis and excretion of organic acid anions that dominates the carbon metabolism of the mature proteoid roots.


Asunto(s)
Fosfatos/deficiencia , Fosfoenolpiruvato Carboxilasa/metabolismo , Raíces de Plantas/enzimología , Raíces de Plantas/crecimiento & desarrollo , Proteaceae/enzimología , Proteaceae/crecimiento & desarrollo , Ubiquitinación , Ácidos Carboxílicos/metabolismo , Cinética , Fosfatos/farmacología , Fosfoenolpiruvato Carboxilasa/química , Fosfoenolpiruvato Carboxilasa/aislamiento & purificación , Fosforilación/efectos de los fármacos , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/metabolismo , Raíces de Plantas/efectos de los fármacos , Proteaceae/efectos de los fármacos , Proteína Fosfatasa 2/metabolismo , Subunidades de Proteína/metabolismo , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Factores de Tiempo , Ubiquitinación/efectos de los fármacos
9.
J Exp Bot ; 62(15): 5485-95, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21841182

RESUMEN

This study employs transcript profiling together with immunoblotting and co-immunopurification to assess the tissue-specific expression, protein:protein interactions, and post-translational modifications (PTMs) of plant- and bacterial-type phosphoenolpyruvate carboxylase (PEPC) isozymes (PTPC and BTPC, respectively) in the castor plant, Ricinus communis. Previous studies established that the Class-1 PEPC (PTPC homotetramer) of castor oil seeds (COS) is activated by phosphorylation at Ser-11 and inhibited by monoubiquitination at Lys-628 during endosperm development and germination, respectively. Elimination of photosynthate supply to developing COS by depodding caused the PTPC of the endosperm and cotyledon to be dephosphorylated, and then subsequently monoubiquitinated in vivo. PTPC monoubiquitination rather than phosphorylation is widespread throughout the castor plant and appears to be the predominant PTM of Class-1 PEPC that occurs in planta. The distinctive developmental patterns of PTPC phosphorylation versus monoubiquitination indicates that these two PTMs are mutually exclusive. By contrast, the BTPC: (i) is abundant in the inner integument, cotyledon, and endosperm of developing COS, but occurs at low levels in roots and cotyledons of germinated COS, (ii) shows a unique developmental pattern in leaves such that it is present in leaf buds and young expanding leaves, but undetectable in fully expanded leaves, and (iii) tightly interacts with co-expressed PTPC to form the novel and allosterically-desensitized Class-2 PEPC heteromeric complex. BTPC and thus Class-2 PEPC up-regulation appears to be a distinctive feature of rapidly growing and/or biosynthetically active tissues that require a large anaplerotic flux from phosphoenolpyruvate to replenish tricarboxylic acid cycle C-skeletons being withdrawn for anabolism.


Asunto(s)
Isoenzimas/metabolismo , Fosfoenolpiruvato Carboxilasa/metabolismo , Proteínas de Plantas/metabolismo , Ricinus/enzimología , Isoenzimas/genética , Fosfoenolpiruvato Carboxilasa/genética , Fosforilación , Proteínas de Plantas/genética , Unión Proteica , Procesamiento Proteico-Postraduccional/genética , Procesamiento Proteico-Postraduccional/fisiología , Ricinus/genética , Ricinus/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA