Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Complex Psychiatry ; 9(1-4): 57-69, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37101541

RESUMEN

Introduction: Chronic stress-related illnesses such as major depressive disorder and post-traumatic stress disorder share symptomatology, including anxiety, anhedonia, and helplessness. Across disorders, neurotoxic dysregulated glutamate (Glu) signaling may underlie symptom emergence. Current first-line antidepressant drugs, which do not directly target Glu signaling, fail to provide adequate benefit for many patients and are associated with high relapse rates. Riluzole modulates glutamatergic neurotransmission by increasing metabolic cycling and modulating signal transduction. Clinical studies exploring riluzole's efficacy in stress-related disorders have provided varied results. However, the utility of riluzole for treating specific symptom dimensions or as a prophylactic treatment has not been comprehensively assessed. Methods: We investigated whether chronic prophylactic riluzole (∼12-15 mg/kg/day p.o.) could prevent the emergence of behavioral deficits induced by unpredictable chronic mild stress (UCMS) in mice. We assessed (i) anxiety-like behavior using the elevated-plus maze, open-field test, and novelty-suppressed feeding, (ii) mixed anxiety/anhedonia-like behavior in the novelty-induced hypophagia test, and (iii) anhedonia-like behavior using the sucrose consumption test. Z-scoring summarized changes across tests measuring similar dimensions. In a separate learned helplessness (LH) cohort, we investigated whether chronic prophylactic riluzole treatment could block the development of helplessness-like behavior. Results: UCMS induced an elevation in anhedonia-like behavior and overall behavioral emotionality that was blocked by prophylactic riluzole. In the LH cohort, prophylactic riluzole blocked the development of helplessness-like behavior. Discussion/Conclusion: This study supports the utility of riluzole as a prophylactic medication for preventing anhedonia and helplessness symptoms associated with stress-related disorders.

2.
Biol Psychiatry ; 91(9): 798-809, 2022 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-34861977

RESUMEN

BACKGROUND: Information processing in cortical cell microcircuits involves regulation of excitatory pyramidal (PYR) cells by inhibitory somatostatin- (SST), parvalbumin-, and vasoactive intestinal peptide-expressing interneurons. Human postmortem and rodent studies show impaired PYR cell dendritic morphology and decreased SST cell markers in major depressive disorder or after chronic stress. However, knowledge of coordinated changes across microcircuit cell types is virtually absent. METHODS: We investigated the transcriptomic effects of unpredictable chronic mild stress (UCMS) on distinct microcircuit cell types in the medial prefrontal cortex (cingulate regions 24a, 24b, and 32) in mice. C57BL/6 mice, exposed to UCMS or control housing for 5 weeks, were assessed for anxiety- and depressive-like behaviors. Microcircuit cell types were laser microdissected and processed for RNA sequencing. RESULTS: UCMS induced predicted elevations in behavioral emotionality in mice. DESeq2 analysis revealed unique differentially expressed genes in each cell type after UCMS. Presynaptic functions, oxidative stress response, metabolism, and translational regulation were differentially dysregulated across cell types, whereas nearly all cell types showed downregulated postsynaptic gene signatures. Across the cortical microcircuit, we observed a shift from a distributed transcriptomic coordination across cell types in control mice toward UCMS-induced increased coordination between PYR, SST, and parvalbumin cells and a hub-like role for PYR cells. Finally, we identified a microcircuit-wide coexpression network enriched in synaptic, bioenergetic, and oxidative stress response genes that correlated with UCMS-induced behaviors. CONCLUSIONS: These findings suggest cell-specific deficits, microcircuit-wide synaptic reorganization, and a shift in cells regulating the cortical excitation-inhibition balance, suggesting increased coordinated regulation of PYR cells by SST and parvalbumin cells.


Asunto(s)
Trastorno Depresivo Mayor , Parvalbúminas , Animales , Trastorno Depresivo Mayor/metabolismo , Interneuronas/fisiología , Ratones , Ratones Endogámicos C57BL , Parvalbúminas/metabolismo , Transcriptoma
3.
Neuropharmacology ; 190: 108562, 2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-33864799

RESUMEN

Clinical and preclinical studies report that chronic stress induces behavioral deficits as well as volumetric and synaptic alterations in corticolimbic brain regions including the anterior cingulate cortex (ACC), amygdala (AMY), nucleus accumbens (NAc) and hippocampus (HPC). Here, we aimed to investigate the volumetric changes associated with chronic restraint stress (CRS) and link these changes to the CRS-induced behavioral and synaptic deficits. We first confirmed that CRS increases behavioral emotionality, defined as collective scoring of anxiety- and anhedonia-like behaviors. We then demonstrated that CRS induced a reduction of total brain volume which negatively correlated with behavioral emotionality. Region-specific analysis identified that only the ACC showed significant decrease in volume following CRS (p < 0.05). Reduced ACC correlated with increased behavioral emotionality (r = -0.56; p = 0.0003). Although not significantly altered by CRS, AMY and NAc (but not the HPC) volumes were negatively correlated with behavioral emotionality. Finally, using structural covariance network analysis to assess shared volumetric variances between the corticolimbic brain regions and associated structures, we found a progressive decreased ACC degree and increased AMY degree following CRS. At the cellular level, reduced ACC volume correlated with decreased PSD95 (but not VGLUT1) puncta density (r = 0.35, p < 0.05), which also correlated with increased behavioral emotionality (r = -0.44, p < 0.01), suggesting that altered synaptic strength is an underlying substrate of CRS volumetric and behavioral effects. Our results demonstrate that CRS effects on ACC volume and synaptic density are linked to behavioral emotionality and highlight key ACC structural and morphological alterations relevant to stress-related illnesses including mood and anxiety disorders.


Asunto(s)
Amígdala del Cerebelo/patología , Ansiedad/patología , Conducta Animal , Encéfalo/patología , Giro del Cíngulo/patología , Estrés Psicológico/patología , Sinapsis/patología , Amígdala del Cerebelo/diagnóstico por imagen , Amígdala del Cerebelo/metabolismo , Amígdala del Cerebelo/fisiopatología , Anhedonia , Animales , Ansiedad/fisiopatología , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Encéfalo/fisiopatología , Homólogo 4 de la Proteína Discs Large/metabolismo , Giro del Cíngulo/diagnóstico por imagen , Giro del Cíngulo/metabolismo , Giro del Cíngulo/fisiopatología , Imagen por Resonancia Magnética , Ratones , Tamaño de los Órganos , Restricción Física , Estrés Psicológico/diagnóstico por imagen , Estrés Psicológico/fisiopatología , Sinapsis/metabolismo , Proteína 1 de Transporte Vesicular de Glutamato/metabolismo
4.
Int J Neuropsychopharmacol ; 24(6): 505-518, 2021 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-33438026

RESUMEN

INTRODUCTION: Deficits in somatostatin-positive gamma-aminobutyric acid interneurons (SST+ GABA cells) are commonly reported in human studies of mood and anxiety disorder patients. A causal link between SST+ cell dysfunction and symptom-related behaviors has been proposed based on rodent studies showing that chronic stress, a major risk factor for mood and anxiety disorders, induces a low SST+ GABA cellular phenotype across corticolimbic brain regions; that lowering Sst, SST+ cell, or GABA functions induces depressive-/anxiety-like behaviors (a rodent behavioral construct collectively defined as "behavioral emotionality"); and that disinhibiting SST+ cells has antidepressant-like effects. Recent studies found that compounds preferentially potentiating receptors mediating SST+ cell functions, α5-GABAA receptor positive allosteric modulators (α5-PAMs), achieved antidepressant-like effects. Together, the evidence suggests that SST+ cells regulate mood and cognitive functions that are disrupted in mood disorders and that rescuing SST+ cell function via α5-PAM may represent a targeted therapeutic strategy. METHODS: We developed a mouse model allowing chemogenetic manipulation of brain-wide SST+ cells and employed behavioral characterization 30 minutes after repeated acute silencing to identify contributions to symptom-related behaviors. We then assessed whether an α5-PAM, GL-II-73, could rescue behavioral deficits. RESULTS: Brain-wide SST+ cell silencing induced features of stress-related illnesses, including elevated neuronal activity and plasma corticosterone levels, increased anxiety- and anhedonia-like behaviors, and impaired short-term memory. GL-II-73 led to antidepressant- and anxiolytic-like improvements among behavioral deficits induced by brain-wide SST+ cell silencing. CONCLUSION: Our data validate SST+ cells as regulators of mood and cognitive functions and demonstrate that bypassing low SST+ cell function via α5-PAM represents a targeted therapeutic strategy.


Asunto(s)
Síntomas Conductuales/tratamiento farmacológico , GABAérgicos/farmacología , Neuronas GABAérgicas/efectos de los fármacos , Interneuronas/efectos de los fármacos , Receptores de GABA-A/efectos de los fármacos , Somatostatina/metabolismo , Animales , Conducta Animal/efectos de los fármacos , Modelos Animales de Enfermedad , Técnicas Genéticas , Vectores Genéticos , Ratones , Ratones Endogámicos C57BL
5.
Neuroscience ; 440: 113-129, 2020 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-32473277

RESUMEN

Altered activity of corticolimbic brain regions is a hallmark of stress-related illnesses, including mood disorders, neurodegenerative diseases, and substance abuse disorders. Acute stress adaptively recruits brain region-specific functions for coping, while sustained activation under chronic stress may overwhelm feedback mechanisms and lead to pathological cellular and behavioral responses. The neural mechanisms underlying dysregulated stress responses and how they contribute to behavioral deficits are poorly characterized. Here, we tested whether prior exposure to chronic restraint stress (CRS) or unpredictable chronic mild stress (UCMS) in mice could alter functional response to acute stress and whether these changes are associated with chronic stress-induced behavioral deficits. More specifically, we assessed acute stress-induced functional activation indexed by c-Fos+ cell counts in 24 stress- and mood-related brain regions, and determined if changes in functional activation were linked to chronic stress-induced behavioral impairments, summarized across dimensions through principal component analysis (PCA). Results indicated that CRS and UCMS led to convergent physiological and anxiety-like deficits, whereas working and short-term memory were impaired only in UCMS mice. CRS and UCMS exposure exacerbated functional activation by acute stress in anterior cingulate cortex (ACC) area 24b and ventral hippocampal (vHPC) CA1, CA3, and subiculum. In dysregulated brain regions, levels of functional activation were positively correlated with principal components reflecting variance across behavioral deficits relevant to stress-related disorders. Our data supports an association between a dysregulated stress response, altered functional corticolimbic excitation/inhibition balance, and the expression of maladaptive behaviors.


Asunto(s)
Giro del Cíngulo , Hipocampo , Animales , Ansiedad , Depresión , Ratones , Estrés Psicológico
6.
Mol Neuropsychiatry ; 5(2): 84-97, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31192221

RESUMEN

Altered gamma-aminobutyric acid (GABA) function is consistently reported in psychiatric disorders, normal aging, and neurodegenerative disorders and reduced function of GABA interneurons is associated with both mood and cognitive symptoms. Benzodiazepines (BZ) have broad anxiolytic, but also sedative, anticonvulsant and amnesic effects, due to nonspecific GABA-A receptor (GABAA-R) targeting. Varying the profile of activity of BZs at GABAA-Rs is predicted to uncover additional therapeutic potential. We synthesized four novel imidazobenzodiazepine (IBZD) amide ligands and tested them for positive allosteric modulation at multiple α-GABAA-R (α-positive allosteric modulators), pharmacokinetic properties, as well as anxiolytic and antidepressant activities in adult mice. Efficacy at reversing stress-induced or age-related working memory deficits was assessed using a spontaneous alternation task. Diazepam (DZP) was used as a control. Three ligands (GL-II-73, GL-II-74, and GL-II-75) demonstrated adequate brain penetration and showed predictive anxiolytic and antidepressant efficacies. GL-II-73 and GL-II-75 significantly reversed stress-induced and age-related working memory deficits. In contrast, DZP displayed anxiolytic but no antidepressant effects or effects on working memory. We demonstrate distinct profiles of anxiolytic, antidepressant, and/or pro-cognitive activities of newly designed IBZD amide ligands, suggesting novel therapeutic potential for IBZD derivatives in depression and aging.

7.
Neuropharmacology ; 153: 98-110, 2019 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-31075295

RESUMEN

Stress-related illnesses such as major depressive and anxiety disorders are characterized by maladaptive responses to stressful life events. Chronic stress-based animal models have provided critical insight into the understanding of these responses. Currently available assays measuring chronic stress-induced behavioral states in mice are limited in their design (short, not repeatable, sensitive to experimenter-bias) and often inconsistent. Using the Noldus PhenoTyper apparatus, we identified a new readout that repeatedly assesses behavioral changes induced by chronic stress in two mouse models i.e. chronic restraint stress (CRS) and chronic unpredictable mild stress (UCMS). The PhenoTyper test consists of overnight monitoring of animals' behavior in home-cage setting before, during and after a 1hr light challenge applied over a designated food zone. We tested the reproducibility and reliability of the PhenoTyper test in assessing the effects of chronic stress exposure, and compared outcomes with commonly-used tests. While chronic stress induced heterogeneous profiles in classical tests, CRS- and UCMS-exposed mice showed a very consistent response in the PhenoTyper test. Indeed, CRS and UCMS mice continue avoiding the lit zone in favor of the shelter zone. This "residual avoidance" after the light challenge, lasted for hours beyond termination of the challenge, was not observed after acute stress and was consistently found throughout stress exposure in both models. Chronic stress-induced residual avoidance was alleviated by chronic imipramine treatment but not acute diazepam administration. This behavioral index should be instrumental for studies aiming to better understand the trajectory of chronic stress-induced deficits and potentially screen novel anxiolytics and antidepressants.


Asunto(s)
Antidepresivos/uso terapéutico , Ansiedad/tratamiento farmacológico , Reacción de Prevención/efectos de los fármacos , Depresión/tratamiento farmacológico , Estrés Psicológico/tratamiento farmacológico , Animales , Antidepresivos/farmacología , Ansiedad/psicología , Reacción de Prevención/fisiología , Enfermedad Crónica , Depresión/psicología , Diazepam/farmacología , Diazepam/uso terapéutico , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Estrés Psicológico/psicología , Resultado del Tratamiento
8.
Mol Neuropsychiatry ; 4(4): 204-215, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30815456

RESUMEN

Converging evidence suggests that deficits in somatostatin (SST)-expressing neuron signaling contributes to major depressive disorder. Preclinical studies show that enhancing this signaling, specifically at α5 subunit-containing γ-ami-nobutyric acid subtype A receptors (α5-GABAARs), provides a potential means to overcome low SST neuron function. The cortical microcircuit comprises multiple subtypes of inhibitory γ-aminobutyric acid (GABA) neurons and excitatory pyramidal cells (PYCs). In this study, multilabel fluorescence in situ hybridization was used to characterize α5-GABAAR gene expression in PYCs and three GABAergic neuron subgroups - vasoactive intestinal peptide (VIP)-, SST-, and parvalbumin (PV)-expressing cells - in the human and mouse frontal cortex. Across species, we found the majority of gene expression in PYCs (human: 39.7%; mouse: 54.14%), less abundant expression in PV neurons (human: 20%; mouse: 16.33%), and no expression in VIP neurons (0%). Only human SST cells expressed GABRA5, albeit at low levels (human: 8.3%; mouse: 0%). Together, this localization suggests potential roles for α5-GABAARs within the cortical microcircuit: (1) regulators of PYCs, (2) regulators of PV cell activity across species, and (3) sparse regulators of SST cell inhibition in humans. These results will advance our ability to predict the effects of pharmacological agents targeting α5-GABAARs, which have shown therapeutic potential in preclinical animal models.

9.
Artículo en Inglés | MEDLINE | ID: mdl-29250610

RESUMEN

BACKGROUND: Chronic stress is implicated in the development of various psychiatric illnesses including major depressive disorder. Previous reports suggest that patients with major depressive disorder have increased levels of oxidative stress, including higher levels of DNA/RNA oxidation found in postmortem studies, especially within brain regions responsible for the cognitive and emotional processes disrupted in the disorder. Here, we aimed to investigate whether unpredictable chronic mild stress in mice induces neuronal DNA/RNA oxidation in the prelimbic, infralimbic, and cingulate cortices of the frontal cortex and the basolateral amygdala and to explore potential associations with depressive-like behaviors. We expected that animals subjected to unpredictable chronic mild stress will present higher levels of DNA/RNA oxidation, which will be associated with anxiety-/depressive-like behaviors. METHODS: C57BL/6J mice were assigned to unpredictable chronic mild stress or nonstress conditions (n = 10/group, 50% females). Following five weeks of unpredictable chronic mild stress exposure, mice were tested in a series of behavioral tests measuring anxiety- and depressive-like behaviors. Frontal cortex and amygdala sections were then immunolabeled for neuronal nuclei, a marker of post-mitotic neurons and anti-8-hydroxy-2-deoxyguanosine/8-oxo-7,8-dihydroguanosine, which reflects both DNA and RNA oxidation. RESULTS: Levels of neuronal DNA/RNA oxidation were increased in the frontal cortex of mice subjected to unpredictable chronic mild stress (p = 0.0207). Levels of neuronal DNA/RNA oxidation in the frontal cortex were positively correlated with z-emotionality scores for latency to feed in the novelty-suppressed feeding test (p = 0.0031). Statistically significant differences were not detected in basolateral amygdala levels of neuronal DNA/RNA oxidation between nonstress- and unpredictable chronic mild stress-exposed mice, nor were correlations found with behavioral performances for this region. CONCLUSION: Our results demonstrate that unpredictable chronic mild stress induces a significant increase in neuronal DNA/RNA oxidation in the frontal cortex that correlate with behavioral readouts of the stress response. A lack of DNA/RNA oxidation alterations in the basolateral amygdala suggests greater vulnerability of frontal cortex neurons to DNA/RNA oxidation in response to unpredictable chronic mild stress. These findings add support to the hypothesis that chronic stress-induced damage to DNA/RNA may be an additional molecular mechanism underlying cellular dysfunctions associated with chronic stress and present in stress-related disorders.

10.
Artículo en Inglés | MEDLINE | ID: mdl-28835932

RESUMEN

Evidence continues to build suggesting that the GABAergic neurotransmitter system is altered in brains of patients with major depressive disorder. However, there is little information available related to the extent of these changes or the potential mechanisms associated with these alterations. As stress is a well-established precipitant to depressive episodes, we sought to explore the impact of chronic stress on GABAergic interneurons. Using western blot analyses and quantitative real-time PCR (qPCR) we assessed the effects of five-weeks of chronic unpredictable stress (CUS) exposure on the expression of GABA-synthesizing enzymes (GAD65 and GAD67), calcium-binding proteins (calbindin (CB), parvalbumin (PV) and calretinin (CR)), and neuropeptides co-expressed in GABAergic neurons (somatostatin (SST), neuropeptide Y (NPY), vasoactive intestinal peptide (VIP) and cholecystokinin (CCK)) in the prefrontal cortex (PFC) and hippocampus (HPC) of rats. We also investigated the effects of corticosterone (CORT) and dexamethasone (DEX) exposure on these markers in vitro in primary cortical and hippocampal cultures. We found that CUS induced significant reductions of GAD67 protein levels in both the PFC and HPC of CUS-exposed rats, but did not detect changes in GAD65 protein expression. Similar protein expression changes were found in vitro in cortical neurons. In addition, our results provide clear evidence of reduced markers of interneuron population(s), namely SST and NPY, in the PFC, suggesting these cell types may be selectively vulnerable to chronic stress. Together, this work highlights that chronic stress induces regional and cell type-selective effects on GABAergic interneurons in rats. These findings provide additional supporting evidence that stress-induced GABA neuron dysfunction and cell vulnerability play critical roles in the pathophysiology of stress-related illnesses, including major depressive disorder.

11.
Biol Psychiatry ; 82(8): 549-559, 2017 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-28697889

RESUMEN

The functional integration of external and internal signals forms the basis of information processing and is essential for higher cognitive functions. This occurs in finely tuned cortical microcircuits whose functions are balanced at the cellular level by excitatory glutamatergic pyramidal neurons and inhibitory gamma-aminobutyric acidergic (GABAergic) interneurons. The balance of excitation and inhibition, from cellular processes to neural network activity, is characteristically disrupted in multiple neuropsychiatric disorders, including major depressive disorder (MDD), bipolar disorder, anxiety disorders, and schizophrenia. Specifically, nearly 3 decades of research demonstrate a role for reduced inhibitory GABA level and function across disorders. In MDD, recent evidence from human postmortem and animal studies suggests a selective vulnerability of GABAergic interneurons that coexpress the neuropeptide somatostatin (SST). Advances in cell type-specific molecular genetics have now helped to elucidate several important roles for SST interneurons in cortical processing (regulation of pyramidal cell excitatory input) and behavioral control (mood and cognition). Here, we review evidence for altered inhibitory function arising from GABAergic deficits across disorders and specifically in MDD. We then focus on properties of the cortical microcircuit, where SST-positive GABAergic interneuron deficits may disrupt functioning in several ways. Finally, we discuss the putative origins of SST cell deficits, as informed by recent research, and implications for therapeutic approaches. We conclude that deficits in SST interneurons represent a contributing cellular pathology and therefore a promising target for normalizing altered inhibitory function in MDD and other disorders with reduced SST cell and GABA functions.


Asunto(s)
Corteza Cerebral/patología , Depresión/patología , Depresión/terapia , Interneuronas/metabolismo , Interneuronas/patología , Somatostatina/metabolismo , Ácido gamma-Aminobutírico/metabolismo , Animales , Antidepresivos/uso terapéutico , Humanos , Interneuronas/efectos de los fármacos , Red Nerviosa/metabolismo , Red Nerviosa/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...