Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mar Environ Res ; 196: 106404, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38341981

RESUMEN

Shellfish species, including oysters, clams, and mussels, are extensively cultured in coastal waters. Its location is determined by factors such as nutrient availability, water temperature, tidal cycle, and the presence of contaminants such as Escherichia coli and enteric viruses. With the expansion and intensification of human activities at vicinities, the presence of anthropogenic contaminants has increased, threatening shellfish farms and consumer safety give the prevalent consumption of raw shellfish. This literature review aims to provide a comprehensive analysis of the dietary exposure and assess the risk associated with enteric viruses and bacteria detected in shellfish. The predominant bacteria and viruses detected in shellfish are reported, and the potential interrelation is discussed. The main characteristics of each contaminant and shellfish were reviewed for a more comprehensive understanding. To facilitate a direct estimation of exposure, the estimated daily intake (EDI) of bacteria was calculated based on the average levels of E. coli in shellfish, as reported in the literature. The mean daily ingestion of seafood in each of the five continents was considered. Asia exhibited the highest intake of contaminants, with an average of ±5.6 E. coli units/day.kg body weight in cockles. Simulations were conducted using recommended shellfish consumption levels established by state agencies, revealing significantly lower (p < 0.01) EDI for all continents compared to estimations based on recommended levels. This indicates a higher risk associated with healthy shellfish ingestion, potentially leading to increased intoxication incidents with a change in dietary habits. To promote a healthier lifestyle through increased shellfish consumptions, it is imperative to reduce the exposure of shellfish species to bacteria and enteric viruses. The conventional use of E. coli as the sole indicator for consumption safety and water quality in shellfish farms has been deemed insufficient. Instances where shellfish met E. coli limits established by state agencies were often found to be contaminated with human enteric viruses. Therefore, a holistic approach considering the entire production chain is necessary to support the shellfish industry and ensure food safety.


Asunto(s)
Bivalvos , Enterovirus , Virus , Animales , Humanos , Escherichia coli , Mariscos/análisis , Alimentos Marinos , Contaminación de Alimentos/análisis
2.
Polymers (Basel) ; 15(10)2023 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-37242947

RESUMEN

The prevention of disease and infection requires immune systems that operate effectively. This is accomplished by the elimination of infections and abnormal cells. Immune or biological therapy treats disease by either stimulating or inhibiting the immune system, dependent upon the circumstances. In plants, animals, and microbes, polysaccharides are abundant biomacromolecules. Due to the intricacy of their structure, polysaccharides may interact with and impact the immune response; hence, they play a crucial role in the treatment of several human illnesses. There is an urgent need for the identification of natural biomolecules that may prevent infection and treat chronic disease. This article addresses some of the naturally occurring polysaccharides of known therapeutic potential that have already been identified. This article also discusses extraction methods and immunological modulatory capabilities.

3.
Environ Sci Pollut Res Int ; 30(27): 70771-70782, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37155092

RESUMEN

The increase in pathogen levels in seawater threatens the safety of entire aquatic ecosystems. Foodborne pathogens can potentially accumulate in shellfish, especially in filter feeders such as bivalves, requiring an efficient depuration process before consumption. Alternative approaches to promote a cost-efficient purge at depuration plants are urgently needed. A small prototype pulsed ultraviolet (PUV) light recirculation system was designed, and its depuration potential was tested in a seawater matrix artificially contaminated with high levels of microbial pathogens Escherichia coli, Staphylococcus aureus, Salmonella typhimurium, Bacillus cereus and Candida albicans. The analysis of treatment parameters including voltage, number of pulses and duration of treatment was performed to ensure the highest reduction in contaminant levels. Optimal PUV disinfection was attained at 60 pulses/min at 1 kV for 10 min (a UV output of 12.9 J/cm2). All reductions were statistically significant, and the greatest was observed for S. aureus (5.63 log10), followed by C. albicans (5.15 log10), S. typhimurium (5 log10), B. cereus (4.59 log10) and E. coli (4.55 log10). PUV treatment disrupted the pathogen DNA with the result that S. aureus, C. albicans and S. typhimurium were not detectable by PCR. Regulations were reviewed to address the applicability of PUV treatment as a promising alternative to assist in the reduction of microbial pathogens at depuration plants due to its high efficiency, short treatment period, high UV dose and recirculation system as currently employed in shellfish depuration plants.


Asunto(s)
Desinfección , Staphylococcus aureus , Escherichia coli , Ecosistema , Mariscos , Agua de Mar , Rayos Ultravioleta
5.
Sci Total Environ ; 844: 157067, 2022 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-35780875

RESUMEN

Shellfish are a rich source of minerals, B-vitamins and omega-3 to the human diet. The global population is expected to reach 9.6 billion people by 2050 where there will be increased demand for shellfish and for sustained improvements in harvesting. The production of most consumed species of shellfish is sea-based and are thus susceptible to in situ environmental conditions and water quality. Population growth has contributed to expansion of urbanization and the generation of effluent and waste that reaches aquatic environments, potentially contaminating seafood by exposure to non-treated effluents or inappropriately discarded waste. Environmental contaminants as microplastics (MP), pharmaceuticals (PHAR) and potentially toxic contaminants (PTE) are being identified in all trophic levels and are a current threat to both shellfish and consumer safety. Immunotoxicity, genotoxicity, fertility reduction, mortality and bioaccumulation of PTE are representative examples of the variety of effects already established in contaminated shellfish. In humans, the consumption of contaminated shellfish can lead to neurological and developmental effects, reproductive and gastrointestinal disorders and in extreme cases, death. This timely review provides insights into the presence of MP, PHAR and PTE in shellfish, and estimate the daily intake and hazard quotient for consumption behaviours. Alternatives approaches for seafood depuration that encompass risk reduction are addressed, to reflect state of the art knowledge from a Republic of Ireland perspective. Review of best-published literature revealed that MP, PHAR and PTE contaminants were detected in commercialised species of shellfish, such as Crassostrea and Mytilus. The ability to accumulate these contaminants by shellfish due to feeding characteristics is attested by extensive in vitro studies. However, there is lack of knowledge surrounding the distribution of these contaminants in the aquatic environment their interactions with humans. Preventive approaches including risk assessment are necessary to safeguard the shellfish industry and the consumer.


Asunto(s)
Plásticos , Contaminantes Químicos del Agua , Animales , Contaminación de Alimentos/análisis , Humanos , Microplásticos , Preparaciones Farmacéuticas , Alimentos Marinos/análisis , Mariscos/análisis , Contaminantes Químicos del Agua/análisis
6.
Sci Total Environ ; 809: 152177, 2022 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-34875322

RESUMEN

Acute respiratory distress syndrome (ARDS) is the most common form of acute severe hypoxemic respiratory failure in the critically ill with a hospital mortality of 40%. Alveolar inflammation is one of the hallmarks for this disease. ß-Glucans are polysaccharides isolated from a variety of natural sources including mushrooms, with documented immune modulating properties. To investigate the immunomodulatory activity of ß-glucans and their potential as a treatment for ARDS, we isolated and measured glucan-rich polysaccharides from seven species of mushrooms. We used three models of in-vitro injury in THP-1 macrophages, Peripheral blood mononuclear cells (CD14+) (PMBCs) isolated from healthy volunteers and lung epithelial cell lines. We observed variance between ß-glucan content in extracts isolated from seven mushroom species. The extracts with the highest ß-glucan content found was Lentinus edodes which contained 70% w/w and Hypsizygus tessellatus which contained 80% w/w with low levels of α-glucan. The extracts had the ability to induce secretion of up to 4000 pg/mL of the inflammatory cytokine IL-6, and up to 5000 pg/mL and 500 pg/mL of the anti-inflammatory cytokines IL-22 and IL-10, respectively, at a concentration of 1 mg/mL in THP-1 macrophages. In the presence of cytokine injury, IL-8 was reduced from 15,000 pg/mL to as low as 10,000 pg/mL in THP-1 macrophages. After insult with LPS, phagocytosis dropped from 70-90% to as low 10% in CD14+ PBMCs. After LPS insult CCL8 relative gene expression was reduced, and IL-10 relative gene expression increased from 50 to 250-fold in THP-1 macrophages. In lung epithelial cells, both A549 and BEAS-2B after IL-1ß insult, IL-8 levels dropped from 10,000 pg/mL to as low as 6000 pg/mL. TNF-α levels dropped 10-fold from 100 pg/mL to just below 10 pg/mL. These results demonstrate the therapeutic potential of ß-glucans in inflammatory lung conditions. Findings also advance bio-based research that connects green innovation with One Health applications for the betterment of society.


Asunto(s)
Agaricales , beta-Glucanos , Glucanos , Humanos , Leucocitos Mononucleares , Pulmón , Polisacáridos
7.
Pharmaceutics ; 12(12)2020 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-33291349

RESUMEN

This study was performed to develop an adjuvant therapy in the form of a self-administered vaginal tablet regimen for the localized delivery of chemotherapeutic drugs. This therapy will help to reduce relapse by eradicating cancerous cells in the margin of cervical tumors. The vaginal tablet is a very common formulation that is easy to manufacture, easy to place in the vagina, and has a low cost of manufacture, making them ideal for use in developing countries. A combination of disulfiram and 5-fluorouracil, which are both off-patent drugs and provide different modes of action, were evaluated. The tablets developed were evaluated for weight variation, thickness, hardness, friability, swelling index, differential scanning calorimetry (DSC), particle morphology, in vitro drug release, and cytotoxicity on Ca-Ski cells. Both layers were designed to release both drugs concurrently for a synergistic effect. The polymer-polymer interaction between the layers was able to reduce the loss of formulation due to chitosan. While the bilayer tablet had satisfactory performance in the physicochemical tests, in vitro cell culture with Ca-Ski also showed a synergistic effect using a combination of drugs at a low dose. However, the formulation only had 24-h dose release before degradation. Further drug combinations should be evaluated in subsequent studies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...