Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 137
Filtrar
1.
Phytomedicine ; 129: 155552, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38552378

RESUMEN

BACKGROUND: Studies have shown that phenylethanoid glycosides (PhGs) have multiple pharmacological effects such as anti-inflammatory, hepatoprotective or neuroprotective functions, whereas their anti-tumor effects are rarely studied. Tubuloside B (Tub B) is a PhG isolated from Cistanche deserticola, a traditional Chinese medicine. To date, there is a lack of comprehensive research regarding the biological activity of Tub B. PURPOSE: The subject of the current study was to investigate the anti-hepatocellular carcinoma (HCC) cell activity and the underlying mechanism of Tub B. METHODS: We evaluated the in vitro anti-migratory effect of Tub B by scratch and transwell assays. RNA-seq was employed to identify the differential genes by Tub B. Besides, the functional mechanism of Tub B was investigated by distinct molecular biology techniques including immunofluorescent staining, quantitative PCR, as well as western blot analysis. Subsequently, we utilized Hep3B cells for in vivo metastasis assays through spleen injection and evaluated the anti-migratory effect of Tub B in hepatocellular carcinoma (HCC). RESULTS: Tub B exhibited in vitro and in vivo inhibition of HCC cell migration. Tub B decreased the expression of transcriptional target genes downstream of the Hippo pathway, including CTGF, CYR61, and N-cadherin as determined by RNA-seq. Furthermore, mechanistic studies confirmed that Tub B increased phosphorylation of YAP at S127, which contributes to YAP cytoplasmic localization. Additionally, overexpression of YAP abrogated Tub B-induced inhibition of HCC migration and the mRNA levels of CTGF, CYR61, and N-cadherin. CONCLUSIONS: Taken together, these results illustrated that Tub B demonstrated great potential in inhibiting migration of HCC, and a portion of its impact can be attributed to the modulation of the Hippo-YAP pathway.

2.
Int J Biol Macromol ; 266(Pt 1): 131208, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38552695

RESUMEN

In this study, three activators and two activation methods were employed to activate sesame lignin-based biochar. The biochar samples were comprehensively characterized, their abilities to adsorb benzo[a]pyrene (BaP) from sesame oil were assessed, and the mechanism was analyzed. The results showed that the biochar obtained by one-step activation was more effective in removing BaP from sesame oil than the biochar produced by two-step activation. Among them, the biochar generated by one-step activation with ZnCl2 as the activator had the largest specific surface area (1068.8776 m3/g), and the richest mesoporous structure (0.7891 m3/g); it removed 90.53 % of BaP from sesame oil. BaP was mainly adsorbed by the mesopores of biochar. Mechanistically, pore-filling, π-π conjugations, hydrogen bonding, and n-π interactions were involved. The adsorption was spontaneous and heat-absorbing. In conclusion, the preparation of sesame lignin biochar using one-step activation with ZnCl2 as the activator was found to be the best for removing BaP from sesame oil. This biochar may be an economical adsorbent for the industrial removal of BaP from sesame oil.


Asunto(s)
Benzo(a)pireno , Carbón Orgánico , Lignina , Aceite de Sésamo , Sesamum , Carbón Orgánico/química , Lignina/química , Benzo(a)pireno/química , Adsorción , Aceite de Sésamo/química , Sesamum/química , Compuestos de Zinc/química , Cloruros/química
3.
Front Bioeng Biotechnol ; 12: 1363569, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38497051

RESUMEN

Cancer is a leading cause of death worldwide, and the development of new diagnostic and treatment methods is crucial. Manganese-based nanomaterials (MnNMs) have emerged as a focal point in the field of cancer diagnosis and treatment due to their multifunctional properties. These nanomaterials have been extensively explored as contrast agents for various imaging technologies such as magnetic resonance imaging (MRI), photoacoustic imaging (PAI), and near-infrared fluorescence imaging (NIR-FL). The use of these nanomaterials has significantly enhanced the contrast for precise tumor detection and localization. Moreover, MnNMs have shown responsiveness to the tumor microenvironment (TME), enabling innovative approaches to cancer treatment. This review provides an overview of the latest developments of MnNMs and their potential applications in tumor diagnosis and therapy. Finally, potential challenges and prospects of MnNMs in clinical applications are discussed. We believe that this review would serve as a valuable resource for guiding further research on the application of manganese nanomaterials in cancer diagnosis and treatment, addressing the current limitations, and proposing future research directions.

4.
Front Biosci (Landmark Ed) ; 29(2): 70, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38420793

RESUMEN

BACKGROUND: The number of older people in the world is increasing year by year; studies have shown that more than 90% of cardiovascular disease occurs in the older people population, indicating that aging is one of the major risks involved in the development of cardiovascular disease. Therefore, retarding the development of cardiac aging is an important strategy to prevent aging-related cardiovascular diseases. METHODS: In the current study, we examined the anti-cardiovascular aging potential of canthaxanthin in vitro and in vivo experiments. For this, a model of cardiomyocyte senescence induced by D-galactose was established, which was used to investigate the canthaxanthin's effect on cardiac premature aging. RESULTS: We found that canthaxanthin obviously mitigated the cardiomyocyte senescence in vitro. Further mechanistic studies revealed that canthaxanthin seems to alleviate cardiomyocyte senescence by regulating the autophagy process. Furthermore, the effects of canthaxanthin on cardiovascular senescence were further evaluated. We also observed that canthaxanthin mitigated cardiac aging and fibrosis in the aged mice model. CONCLUSIONS: To sum up, the current work showed that canthaxanthin could obviously alleviate cardiac premature aging, indicating that canthaxanthin could be used as a biologically active molecule for the treatment of cardiac aging and fibrosis.


Asunto(s)
Envejecimiento Prematuro , Enfermedades Cardiovasculares , Humanos , Animales , Ratones , Anciano , Cantaxantina/farmacología , Envejecimiento Prematuro/patología , Enfermedades Cardiovasculares/tratamiento farmacológico , Enfermedades Cardiovasculares/prevención & control , Enfermedades Cardiovasculares/patología , Envejecimiento , Miocitos Cardíacos , Fibrosis , Senescencia Celular
5.
Reprod Sci ; 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38347380

RESUMEN

It is challenging to distinguish embryos with a balanced translocation karyotype from a normal karyotype by existing conventional genetic testing methods. However, in germ-cell gamete generation, chromosome exchange and separation through cell meiosis form a different proportion of unbalanced gametes. Adverse birth events may occur, such as repeated miscarriages and fetal birth defects. In this study, the exact breakpoints of structural variation (SV) from two balanced translocation carrier families by using Nanopore long reads sequencing technology were obtained, and haplotype analysis and Sanger verified the accuracy of the detection results, confirming the application value of the Nanopore sequencing technology in the detection of balanced translocation before embryo implantation. Nanopore long-read sequencing was performed to find the precise breakpoint of chromosome-balanced translocation carriers. The breakpoints were subsequently verified by designing primers across the breakpoints and Sanger sequencing. Haplotype linkage analysis of SNPs which can be linked by a read block of families around the breakpoint regions was followed. After frozen (-thawed) embryo transfer (FET), prenatal cytogenetic analysis of amniotic fluid cells confirmed the predicted karyotypes from the transferred embryos. The presence of breakpoints was detected in three embryos of patient 1. No breakpoints were detected in either embryo of patient 2. One balanced translocated embryo from patient 1 and one normal euploid embryo from patient 2 were transplanted back into the patients, and amniotic fluid cells were analyzed for the karyotype of fetuses. The results were entirely consistent with the fetal karyotype. And through late follow-up, both patients successfully had a live birth fetus. The breakpoint location of the balanced chromosome translocation can be accurately found by Nanopore sequencing. The haplotype of carriers can be successfully constructed by Nanopore and sanger sequencing confirmed that the results were accurate. This is very advantageous for preimplantation genetic testing for chromosomal structural rearrangements (PGT-SR) detection in the families without proband.

6.
BMC Pregnancy Childbirth ; 24(1): 100, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38302865

RESUMEN

OBJECTIVE: To determine whether non-invasive prenatal testing is an alternative testing option to preimplantation genetic testing (PGT) in pregnant patients. METHODS: This was a retrospective study of the clinical outcomes of patients who underwent PGT and invasive or non-invasive pregnancy testing after euploid blastocyst transfer at our IVF centre between January 2017 and December 2022. RESULTS: In total, 321 patients were enrolled in this study, 138 (43.0%) received invasive pregnancy testing, and 183 (57.0%) patients underwent non-invasive testing. The mean age of the patients in Group 2 was higher than that of the patients in Group 1 (35.64 ± 4.74 vs. 31.04 ± 4.15 years, P < 0.001). The basal LH and AMH levels were higher in Group 1 than in Group 2 (4.30 ± 2.68 vs. 3.40 ± 1.88, P = 0.003; 5.55 ± 11.22 vs. 4.09 ± 3.55, P = 0.012), but the clinical outcomes were not significantly different. Furthermore, the clinical outcomes of patients undergoing invasive testing were similar to those of patients undergoing non-invasive testing with the same PGT indication. CONCLUSION: Our results suggest that non-invasive pregnancy testing is a suitable alternative option for detecting the foetal chromosomal status in a PGT cycle. However, the usefulness of non-invasive testing in PGT-M patients is still limited.


Asunto(s)
Diagnóstico Preimplantación , Embarazo , Femenino , Humanos , Diagnóstico Preimplantación/métodos , Estudios Retrospectivos , Aneuploidia , Pruebas Genéticas/métodos , Transferencia de Embrión/métodos , Fertilización In Vitro/métodos
7.
BMC Med Genomics ; 17(1): 33, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38262988

RESUMEN

OBJECTIVE: Preimplantation genetic testing for monogenic disorders (PGT-M) has been used for over 20 years to detect many serious genetic conditions. However, there is still a lack of reference materials (RMs) to validate the test performance during the development and quality control of PGT-M. METHOD: Sixteen thalassemia cell lines from four thalassemia families were selected to establish the RMs. Each family consisted of parents with heterozygous mutations for α- and/or ß-thalassemia and two children, at least one of whom carried a homozygous thalassemia mutation (proband). The RM panel consisted of 12 DNA samples (parents and probands in 4 families) and 4 simulated embryos (cell lines constructed from blood samples from the four nonproband children). Four accredited genetics laboratories that offer verification of thalassemia samples were invited to evaluate the performance of the RM panel. Furthermore, the stability of the RMs was determined by testing after freeze‒thaw cycles and long-term storage. RESULTS: PGT-M reference materials containing 12 genome DNA (gDNA) reference materials and 4 simulated embryo reference materials for thalassemia testing were successfully established. Next-generation sequencing was performed on the samples. The genotypes and haplotypes of all 16 PGT-M reference materials were concordant across the four labs, which used various testing workflows. These well-characterized PGT-M reference materials retained their stability even after 3 years of storage. CONCLUSION: The establishment of PGT-M reference materials for thalassemia will help with the standardization and accuracy of PGT-M in clinical use.


Asunto(s)
Pruebas Genéticas , Talasemia beta , Niño , Humanos , Secuenciación de Nucleótidos de Alto Rendimiento , Mutación , ADN
8.
Biol Res ; 56(1): 60, 2023 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-37978575

RESUMEN

BACKGROUND: The decline in the quantity and quality of mitochondria are closely associated with infertility, particularly in advanced maternal age. Transferring autologous mitochondria into the oocytes of infertile females represents an innovative and viable strategy for treating infertility, with no concerns regarding ethical considerations. As the donor cells of mitochondria, stem cells have biological advantages but research and evidence in this area are quite scarce. METHODS: To screen out suitable human autologous ooplasmic mitochondrial donor cells, we performed comprehensive assessment of mitochondrial physiology, function and metabolic capacity on a varity of autologous adipose, marrow, and urine-derived mesenchymal stromal cells (ADSC, BMSC and USC) and ovarian germline granulosa cells (GC). Further, to explore the biosafety, effect and mechanism of stem cell-derived mitochondria transfer on human early embryo development, randomized in-vitro basic studies were performed in both of the young and aged oocytes from infertile females. RESULTS: Compared with other types of mesenchymal stromal cells, USC demonstrated a non-fused spherical mitochondrial morphology and low oxidative stress status which resembled the oocyte stage. Moreover, USC mitochondrial content, activity and function were all higher than other cell types and less affected by age, and it also exhibited a biphasic metabolic pattern similar to the pre-implantation stage of embryonic development. After the biosafety identification of the USC mitochondrial genome, early embryos after USC mitochondrial transfer showed improvements in mitochondrial content, activity, and cytoplasmic Ca2+ levels. Further, aging embryos also showed improvements in embryonic morphological indicators, euploidy rates, and oxidative stress status. CONCLUSION: Autologous non-invasively derived USC mitochondria transfer may be an effective strategy to improve embryonic development and metabolism, especially in infertile females with advanced age or repeated pregnancy failure. It provides evidence and possibility for the autologous treatment of infertile females without invasive and ethical concerns.


Asunto(s)
Infertilidad Femenina , Oocitos , Femenino , Humanos , Embarazo , Envejecimiento , Infertilidad Femenina/metabolismo , Infertilidad Femenina/terapia , Mitocondrias , Oocitos/metabolismo , Células Madre
10.
Phytomedicine ; 117: 154918, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37329755

RESUMEN

BACKGROUND: BCR-ABL1-based resistance to imatinib, mainly resulting from BCR-ABL1 mutations, is largely solved after second- and third-generation tyrosine kinase inhibitors (TKIs) are discovered. Nonetheless, imatinib resistance without BCR-ABL1 mutations, including intrinsic resistance induced by stem cells within chronic myeloid leukemia (CML), remains the major clinical challenge for many patients. PURPOSE: To study the key active ingredients and corresponding target proteins in Huang-Lian-Jie-Du-Tang (HLJDT) against BCR-ABL1-independent CML resistance to therapeutics, and then explore its mechanism of against CML drug resistance. METHODS: Cytotoxicity of HLJDT and its active ingredients in BCR-ABL1-independent imatinib resistance cells was analyzed through MTT assay. The cloning ability was measured through soft agar assay. Monitoring therapeutic effect on Xenografted mice CML model by in vivo imaging technology and mice survival time. Predicting the potential target protein binding sites by the technology of photocrosslinking sensor chip, molecular space simulation docking, and use Surface Plasmon Resonance (SPR) technology . Flow cytometry to detect the ratio of stem progenitor cells (CD34+). Constructing bone marrow transplantation mice CML leukemia model, detect the effects on leukemia stem cells LSK (Lin-\ Sca-1+ \C-kit+) self-renewal. RESULTS: Treatment with HLJDT, berberine and baicalein inhibited cell viability and colony formation of BCR-ABL1-independent imatinib-resistant cells in vitro while prolonging survival in mouse with CML xenografts and transplatation CML-like mouse models in vivo. JAK2 and MCL1were identified as targets of berberine and baicalein. JAK2 and MCL1 are involved in multi-leukemia stem cell-related pathways. Moreover, the ratio of CD34+ cells in resistant CML cells is higher than in treatment-sensitive CML cells. Treatment with BBR or baicalein partially suppressed CML leukemic stem cells (LSCs) self-renewal in vitro and in vivo. CONCLUSION: From the above, we concluded that HLJDT and its key active ingredients (BBR and baicalein) allowed to overcome imatinib resistance with BCR-ABL1 independent by eradication of LSCs by targeting the JAK2 and MCL1 protein levels. Our results lay the foundation for applying HLJDT in patients with TKI-resistant CML.


Asunto(s)
Berberina , Leucemia Mielógena Crónica BCR-ABL Positiva , Leucemia Mieloide Aguda , Humanos , Ratones , Animales , Mesilato de Imatinib/farmacología , Mesilato de Imatinib/uso terapéutico , Proteínas de Fusión bcr-abl/genética , Proteínas de Fusión bcr-abl/metabolismo , Proteína 1 de la Secuencia de Leucemia de Células Mieloides , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Berberina/farmacología , Resistencia a Antineoplásicos , Leucemia Mielógena Crónica BCR-ABL Positiva/tratamiento farmacológico , Leucemia Mielógena Crónica BCR-ABL Positiva/genética , Leucemia Mielógena Crónica BCR-ABL Positiva/metabolismo , Leucemia Mieloide Aguda/tratamiento farmacológico , Células Madre
11.
Mol Ther Nucleic Acids ; 32: 729-742, 2023 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-37234746

RESUMEN

A large proportion of patients with chronic myeloid leukemia (CML; 20%-50%) develop resistance to imatinib in a BCR-ABL1-independent manner. Therefore, new therapeutic strategies for use in this subset of imatinib-resistant CML patients are urgently needed. In this study, we used a multi-omics approach to show that PPFIA1 was targeted by miR-181a. We demonstrate that both miR-181a and PPFIA1-siRNA reduced the cell viability and proliferative capacity of CML cells in vitro, as well as prolonged the survival of B-NDG mice harboring human BCR-ABL1-independent imatinib-resistant CML cells. Furthermore, treatment with miR-181a mimic and PPFIA1-siRNA inhibited the self-renewal of c-kit+ and CD34+ leukemic stem cells and promoted their apoptosis. Small activating (sa)RNAs targeting the promoter of miR-181a increased the expression of endogenous primitive miR-181a (pri-miR-181a). Transfection with saRNA 1-3 inhibited the proliferation of imatinib-sensitive and -resistant CML cells. However, only saRNA-3 showed a stronger and more sustained inhibitory effect than the miR-181a mimic. Collectively, these results show that miR-181a and PPFIA1-siRNA may overcome the imatinib resistance of BCR-ABL1-independent CML, partially by inhibiting the self-renewal of leukemia stem cells and promoting their apoptosis. Moreover, exogenous saRNAs represent promising therapeutic agents in the treatment of imatinib-resistant BCR-ABL1-independent CML.

12.
World J Diabetes ; 14(3): 179-187, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-37035228

RESUMEN

Gestational diabetes mellitus (GDM) is a common pregnancy complication strongly associated with poor maternal-fetal outcomes. Its incidence and prevalence have been increasing in recent years. Women with GDM typically give birth through either vaginal delivery or cesarean section, and the maternal-fetal outcomes are related to several factors such as cervical level, fetal lung maturity, the level of glycemic control still present, and the mode of treatment for the condition. We categorized women with GDM based on the latter two factors. GDM that is managed without medication when it is responsive to nutrition- and exercise-based therapy is considered diet- and exercise-controlled GDM, or class A1 GDM, and GDM managed with medication to achieve adequate glycemic control is considered class A2 GDM. The remaining cases in which neither medical nor nutritional treatment can control glucose levels or patients who do not control their blood sugar are categorized as class A3 GDM. We investigated the optimal time of delivery for women with GDM according to the classification of the condition. This review aimed to address the benefits and harms of giving birth at different weeks of gestation for women with different classes of GDM and attempted to provide an analytical framework and clearer advice on the optimal time for labor.

13.
Free Radic Biol Med ; 203: 86-101, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37044150

RESUMEN

Since multiple myeloma (MM) remains a cureless malignancy of plasma cells to date, it becomes imperative to develop novel drugs and therapeutic targets for MM. We screened a small molecule library comprising 3633 natural product drugs, which demonstrated that Nitidine Chloride (NC), an extract from traditional Chinese medicine Zanthoxylum nitidum. We used Surface Plasmon Resonance-High Performance Liquid Chromatography-Protein Mass Spectrometry (SPR-HPLC-MS), Cellular Thermal Shift Assay (CETSA), molecular docking, and SPR assay to identify the potential targets of NC, in which ABCB6 was the unique target of NC. The effects of ABCB6 on cellular proliferation and drug resistance were determined by CCK8, western blot, flow cytometry, site-mutation cells, transmission electron microscopy, immunohistochemistry staining and xenograft model in vitro and in vivo. NC induced MM cell death by promoting ferroptosis. ABCB6 is the direct target of NC. ABCB6 expression was increased in MM samples compared to normal controls, which was significantly associated with MM relapse and poor outcomes. VGSK was the inferred binding epitope of NC on the ABCB6 protein. In the ABCB6-mutated MM cells, NC did not display cancer resistance, implying the vital role of ABCB6 in NC's bioactivity. Moreover, the silencing of ABCB6 significantly inhibited MM cell growth. Mechanistically, the direct binding of NC to ABCB6 suppressed PI3K/AKT signaling pathway to promote ferroptosis. In conclusion, ABCB6 can be a potential therapeutic target and prognostic biomarker in MM, while NC can be considered a novel drug for MM treatment.


Asunto(s)
Ferroptosis , Mieloma Múltiple , Humanos , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Simulación del Acoplamiento Molecular , Recurrencia Local de Neoplasia , Transducción de Señal , Benzofenantridinas/farmacología , Línea Celular Tumoral , Transportadoras de Casetes de Unión a ATP/metabolismo
14.
J Assist Reprod Genet ; 40(7): 1689-1702, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36864181

RESUMEN

PURPOSE: Poor ovarian response (POR) affects approximately 9% to 24% of women undergoing in vitro fertilization (IVF) cycles, resulting in fewer eggs obtained and increasing clinical cycle cancellation rates. The pathogenesis of POR is related to gene variations. Our study included a Chinese family comprising two siblings with infertility born to consanguineous parents. Poor ovarian response (POR) was identified in the female patient who had multiple embryo implantation failures occurring in subsequent assisted reproductive technology cycles. Meanwhile, the male patient was diagnosed with non-obstructive azoospermia (NOA). METHODS: Whole-exome sequencing and rigorous bioinformatics analyses were conducted to identify the underlying genetic causes. Moreover, the pathogenicity of the identified splicing variant was assessed using a minigene assay in vitro. The remaining poor-quality blastocyst and abortion tissues from the female patient were detected for copy number variations. RESULTS: We identified a novel homozygous splicing variant in HFM1 (NM_001017975.6: c.1730-1G > T) in two siblings. Apart from NOA and POI, biallelic variants in HFM1 were also associated with recurrent implantation failure (RIF). Additionally, we demonstrated that splicing variants caused abnormal alternative splicing of HFM1. Using copy number variation sequencing, we found that the embryos of the female patients had either euploidy or aneuploidy; however, both harbored chromosomal microduplications of maternal origin. CONCLUSION: Our results reveal the different effects of HFM1 on reproductive injury in males and females, extend the phenotypic and mutational spectrum of HFM1, and show the potential risk of chromosomal abnormalities under the RIF phenotype. Moreover, our study provides new diagnostic markers for the genetic counseling of POR patients.


Asunto(s)
Azoospermia , Variaciones en el Número de Copia de ADN , Femenino , Humanos , Masculino , Embarazo , Azoospermia/genética , Aberraciones Cromosómicas , ADN Helicasas/genética , Implantación del Embrión/genética , Gametogénesis , Isoformas de Proteínas
15.
Fertil Steril ; 120(3 Pt 2): 671-681, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37001689

RESUMEN

OBJECTIVE: To investigate whether common genetic polymorphisms are associated with gonadotropin levels after down-regulation with daily gonadotropin-releasing hormone agonist and whether the polymorphisms of candidate variants influence the ovarian response to exogenous gonadotropins. DESIGN: Genetic association study. SETTING: University-affiliated in vitro fertilization center. PATIENTS: Subjects enrolled in an exploratory exome-wide association study (n = 862), a replication exome-wide association study (n = 86), and a classifier validation study (n = 148) were recruited from September 2016 to October 2018, September 2019 to September 2020, and January 2021 to December 2021, respectively. The included patients were aged ≤40 years and had a basal follicle-stimulating hormone (FSH) ≤12 IU/L. INTERVENTIONS: All participants received a luteal phase down-regulation long protocol. Genome DNA was extracted from the peripheral blood leukocytes. For the exploratory and replication cohorts, exome sequencing was conducted on a HiSeq 2500 sequencing platform. The multiplex polymerase chain reaction amplification technique and next-generation sequencing also were performed in the exploratory and replication cohorts. For the samples of the validation cohort, Sanger sequencing was performed. MAIN OUTCOME MEASURES: The primary endpoint was the gonadotropin levels after down-regulation, and the secondary endpoints were hormone levels and follicle diameters during stimulation, the total dose of FSH, duration of FSH stimulation, number of oocytes retrieved, and clinical pregnancy rate. RESULTS: In the exploratory cohort, we identified that FSHB rs6169 (P=2.71 × 10-24) and its single-nucleotide polymorphisms in high linkage disequilibrium were associated with the down-regulated FSH level. The same locus was confirmed in the replication cohort. Women carrying the C allele of FSHB rs6169 exhibited higher average estradiol level during stimulation (P=6.82 × 10-5), shorter duration of stimulation, and less amount of exogenous FSH (Pduration=0.0002; Pdose=0.0024). In the independent validation set, adding rs6169 genotypes into the prediction model for FSH level after down-regulation enhanced the area under the curve from 0.560 to 0.712 in a logistic regression model, and increased prediction accuracy by 41.05% when a support vector machine classifier was applied. CONCLUSION: The C allele of FSHB rs6169 is a susceptibility site for the relatively high level of FSH after down-regulation, which may be associated with increased ovarian FSH sensitivity.


Asunto(s)
Exoma , Inducción de la Ovulación , Embarazo , Femenino , Humanos , Inducción de la Ovulación/métodos , Hormona Folículo Estimulante , Gonadotropinas , Fertilización In Vitro/métodos , Hormona Folículo Estimulante Humana , Polimorfismo de Nucleótido Simple
16.
Int J Biol Sci ; 19(4): 1211-1227, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36923939

RESUMEN

BCR-ABL oncogene-mediated Philadelphia chromosome-positive (Ph+) chronic myeloid leukemia (CML) is suggested to originate from leukemic stem cells (LSCs); however, factors regulating self-renewal of LSC and normal hematopoietic stem cells (HSCs) are largely unclear. Here, we show that RalA, a small GTPase in the Ras downstream signaling pathway, has a critical effect on regulating the self-renewal of LSCs and HSCs. A RalA knock-in mouse model (RalARosa26-Tg/+) was initially constructed on the basis of the Clustered Regularly Interspaced Short Palindromic Repeats/Cas9 (CRISPR/Cas9) assay to analyze normal hematopoietic differentiation frequency using single-cell resolution and flow cytometry. RalA overexpression promoted cell cycle progression and increased the frequency of granulocyte-monocyte progenitors (GMPs), HSCs and multipotent progenitors (MPPs). The uniform manifold approximation and projection (UMAP) plot revealed heterogeneities in HSCs and progenitor cells (HSPCs) and identified the subclusters of HSCs and GMPs with a distinct molecular signature. RalA also promoted BCR-ABL-induced leukemogenesis and self-renewal of primary LSCs and shortened the survival of leukemic mice. RalA knockdown prolonged survival and promoted sensitivity to imatinib in a patient-derived tumor xenograft model. Immunoprecipitation plus single-cell RNA sequencing of the GMP population confirmed that RalA induced this effect by interacting with RAC1. RAC1 inhibition by azathioprine effectively reduced the self-renewal, colony formation ability of LSCs and prolonged the survival in BCR-ABL1-driven RalA overexpression CML mice. Collectively, RalA was detected to be a vital factor that regulates the abilities of HSCs and LSCs, thus facilitating BCR-ABL-triggered leukemia in mice. RalA inhibition serves as the therapeutic approach to eradicate LSCs in CML.


Asunto(s)
Sistemas CRISPR-Cas , Leucemia Mielógena Crónica BCR-ABL Positiva , Humanos , Ratones , Animales , GTP Fosfohidrolasas/metabolismo , Edición Génica , Células Madre Hematopoyéticas/metabolismo , Células Madre Hematopoyéticas/patología , Leucemia Mielógena Crónica BCR-ABL Positiva/genética , Leucemia Mielógena Crónica BCR-ABL Positiva/tratamiento farmacológico , Leucemia Mielógena Crónica BCR-ABL Positiva/patología , Carcinogénesis/genética , Células Madre Neoplásicas/metabolismo , Proteínas de Unión al GTP ral/genética , Proteínas de Unión al GTP ral/metabolismo
17.
Autophagy ; 19(4): 1221-1238, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36048765

RESUMEN

Isoginkgetin (ISO), a natural biflavonoid, exhibited cytotoxic activity against several types of cancer cells. However, its effects on hepatocellular carcinoma (HCC) cells and mechanism remain unclear. Here, we revealed that ISO effectively inhibited HCC cell proliferation and migration in vitro. LC3-II expression and autophagosomes were increased under ISO treatment. In addition, ISO-induced cell death was attenuated by treatment with chloroquine or knockdown of autophagy-related genes (ATG5 or ULK1). ISO significantly suppressed SLC2A1/GLUT1 (solute carrier family 2 member 1) expression and glucose uptake, leading to activation of the AMPK-ULK1 axis in HepG2 cells. Overexpression of SLC2A1/GLUT1 abrogated ISO-induced autophagy. Combining molecular docking with thermal shift analysis, we confirmed that ISO directly bound to the N terminus of CDK6 (cyclin-dependent kinase 6) and promoted its degradation. Overexpression of CDK6 abrogated ISO-induced inhibition of SLC2A1/GLUT1 transcription and induction of autophagy. Furthermore, ISO treatment significantly decreased the H3K27ac, H4K8ac and H3K4me1 levels on the SLC2A1/GLUT1 enhancer in HepG2 cells. Finally, ISO suppressed the hepatocarcinogenesis in the HepG2 xenograft mice and the diethylnitrosamine+carbon tetrachloride (DEN+CCl4)-induced primary HCC mice and we confirmed SLC2A1/GLUT1 and CDK6 as promising oncogenes in HCC by analysis of TCGA data and human HCC tissues. Our results provide a new molecular mechanism by which ISO treatment or CDK6 deletion promotes autophagy; that is, ISO targeting the N terminus of CDK6 for degradation inhibits the expression of SLC2A1/GLUT1 by decreasing the enhancer activity of SLC2A1/GLUT1, resulting in decreased glucose levels and inducing the AMPK-ULK1 pathway.


Asunto(s)
Antineoplásicos , Biflavonoides , Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Animales , Ratones , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Autofagia/fisiología , Biflavonoides/farmacología , Biflavonoides/uso terapéutico , Proteínas Quinasas Activadas por AMP/metabolismo , Quinasa 6 Dependiente de la Ciclina/metabolismo , Quinasa 6 Dependiente de la Ciclina/farmacología , Quinasa 6 Dependiente de la Ciclina/uso terapéutico , Transportador de Glucosa de Tipo 1/genética , Simulación del Acoplamiento Molecular , Antineoplásicos/farmacología , Proliferación Celular , Línea Celular Tumoral , Homólogo de la Proteína 1 Relacionada con la Autofagia/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo
18.
Front Biosci (Landmark Ed) ; 28(12): 367, 2023 12 29.
Artículo en Inglés | MEDLINE | ID: mdl-38179737

RESUMEN

BACKGROUND: Vascular endothelial dysfunction is an early phenotype of aging-related vascular dysfunction. Delaying vascular aging and preventing cardiovascular disease are major public health problems that urgently need to be solved. Scientists have studied various drugs to prevent the occurrence and progress of cardiovascular disease, but progress has been slow. Here, the antisenescence and anti-endothelial damage of canthaxanthin (CX, which is an active molecule from food) has been studied. METHODS: This study was performed by adding CX to a model of cell senescence and oxidative damage induced by hydrogen peroxide. Cellular senescence markers (e.g., p16, p21, and p53) and oxidative damage markers (e.g., reactive oxygen species, nitric oxide, malondialdehyde, superoxide dismutase) were evaluated by the enzyme-linked immunosorbent assay, laser scanning confocal microscopy, and Western blotting. RESULTS: We found that CX downregulated the expression level of senescence-associated molecules, and significantly reduced the oxidative damage of vascular endothelial cells. These observations showed that CX effectively alleviated the senescence of vascular endothelial cells. Furthermore, CX treatment reduced the expression levels of interleukin-6 (IL-6), tumor necrosis factor alpha, and IL-1ß. Finally, in vivo, CX significantly alleviated vascular senescence. CONCLUSIONS: The current study shows that CX has potential application value for treating vascular aging or endothelial cell senescence.


Asunto(s)
Cantaxantina , Enfermedades Cardiovasculares , Ratones , Animales , Cantaxantina/farmacología , Células Endoteliales , Envejecimiento , Senescencia Celular/genética , Estrés Oxidativo , Inflamación
19.
Clin Transl Med ; 12(11): e1072, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36305631

RESUMEN

PURPOSE: Malignant pleural effusion (MPE) is an adverse prognostic factor in patients with osteoblastic osteosarcoma; however, the cellular contexts of MPE are largely unknown. EXPERIMENTAL DESIGN: We performed single-cell RNA-sequencing (scRNA-seq) on 27 260 cells from seven MPE samples and 91 186 cells from eight osteosarcoma tissues, including one recurrent, one lung metastasis and six primary tumour (PT) samples, to characterize their tumour microenvironment. RESULTS: Thirteen main cell groups were identified in osteosarcoma tumour and MPE samples. Immune cells dominate the cellular contexts in MPE with more T/NK cells and less osteoclasts compared to PT samples. Of T/NK cells, CD8+ GNLY+ , CD8+ KLRC2+ T cells and FCGR3A+ NK cells were enriched in MPE but CD4+ FOXP3+ Tregs were enriched in PT samples. Naïve IGHD+ B and immune regulatory IGHA1+ B cells were largely identified in MPE, whereas bone metabolism-related CLEC11A+ B cells were significantly enriched in osteosarcoma PT. M2-type TAMs, including CLEC11A_TAM, C1QC_TAM and Prolif_TAMs, among myeloid cells were enriched in PT, which may suppress cytotoxicity activities of T cells through multiple ligand-receptor interactions. Mature LAMP3+ DCs were transformed from CD1C+ DC and CLEC9A+ DC sub-clusters when exposure to tumour alloantigens, which may improve T cell cytotoxicity activities on tumour cells under anti-PD-L1 treatments. In further, immune cells from MPE usually present up-regulated glycolysis and down-regulated oxidative phosphorylation and riboflavin metabolism activities compared to those in PT samples. CONCLUSIONS: Our study provided a novel cellular atlas of MPE and PT in patients with advanced osteosarcoma, which may provide potential therapeutic targets in the future.


Asunto(s)
Neoplasias Óseas , Osteosarcoma , Derrame Pleural Maligno , Derrame Pleural , Humanos , Microambiente Tumoral , Derrame Pleural Maligno/patología , Osteosarcoma/genética , Neoplasias Óseas/genética , Fenotipo , Subfamília C de Receptores Similares a Lectina de Células NK
20.
Funct Integr Genomics ; 22(5): 1031-1041, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35794284

RESUMEN

Recent studies have suggested the potency of berberine (BBR) for multiple cancer treatments, including multiple myeloma (MM). However, the direct target and underlying mechanism of BBR remain largely understood in MM. Here, we demonstrated that BBR inhibited cell proliferation and acted synergistically with bortezomib in MM.1S cells. BBR treatment induced MM cell cycle arrest by downregulating several cell cycle-related proteins. Murine double minute 2 (MDM2) as a BBR-binding protein was identified by surface plasmon resonance image (SPRi) analysis and molecular docking. Overexpression of MDM2 is associated with MM progression and a poor prognosis. Knockdown MDM2 by siRNA transfection can repress MM malignant progression and attenuate the BBR sensitivity to MM.1S cells. BBR treatment induced the degradation of MDM2 through the ubiquitin-proteasome system and reactivated P53/P21 in MM cells. Overall, our data has illustrated that MDM2, as a binding protein of BBR for the first time, may serve as a potential therapeutic option for MM.


Asunto(s)
Berberina , Mieloma Múltiple , Animales , Apoptosis , Berberina/farmacología , Berberina/uso terapéutico , Bortezomib/metabolismo , Carcinogénesis , Línea Celular Tumoral , Humanos , Ratones , Simulación del Acoplamiento Molecular , Mieloma Múltiple/tratamiento farmacológico , Mieloma Múltiple/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteínas Proto-Oncogénicas c-mdm2/genética , Proteínas Proto-Oncogénicas c-mdm2/metabolismo , ARN Interferente Pequeño , Proteína p53 Supresora de Tumor/genética , Ubiquitina
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...