Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 620
Filtrar
1.
Front Endocrinol (Lausanne) ; 15: 1325320, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38836225

RESUMEN

Background: Creatinine-cystatin C ratio (CCR) has been demonstrated as an objective marker of sarcopenia in clinical conditions but has not been evaluated as an osteoporosis marker in individuals with normal renal function. Methods: We selected 271,831 participants with normal renal function from UK Biobank cohort. Multivariable linear/logistic regression and Cox proportional hazards model were used to investigate the phenotypic relationship between CCR and osteoporosis in total subjects and gender-stratified subjects. Based on the genome-wide association study (GWAS) data, linkage disequilibrium regression (LDSC) and Mendelian randomization (MR) analysis were performed to reveal the shared genetic correlations and infer the causal effects, respectively. Results: Amongst total subjects and gender-stratified subjects, serum CCR was positively associated with eBMD after adjusting for potential risk factors (all P<0.05). The multivariable logistic regression model showed that the decrease in CCR was associated with a higher risk of osteoporosis/fracture in all models (all P<0.05). In the multivariable Cox regression analysis with adjustment for potential confounders, reduced CCR is associated with the incidence of osteoporosis and fracture in both total subjects and gender-stratified subjects (all P<0.05). A significant non-linear dose-response was observed between CCR and osteoporosis/fracture risk (P non-linearity < 0.05). LDSC found no significant shared genetic effects by them, but PLACO identified 42 pleiotropic SNPs shared by CCR and fracture (P<5×10-8). MR analyses indicated the causal effect from CCR to osteoporosis/fracture. Conclusions: Reduced CCR predicted increased risks of osteoporosis/fracture, and significant causal effects support their associations. These findings indicated that the muscle-origin serum CCR was a potential biomarker to assess the risks of osteoporosis and fracture.


Asunto(s)
Biomarcadores , Creatinina , Cistatina C , Análisis de la Aleatorización Mendeliana , Osteoporosis , Humanos , Femenino , Masculino , Osteoporosis/genética , Osteoporosis/sangre , Osteoporosis/epidemiología , Persona de Mediana Edad , Biomarcadores/sangre , Creatinina/sangre , Cistatina C/sangre , Cistatina C/genética , Anciano , Estudio de Asociación del Genoma Completo , Polimorfismo de Nucleótido Simple , Adulto , Densidad Ósea/genética , Factores de Riesgo
2.
Am J Cancer Res ; 14(5): 2037-2054, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38859843

RESUMEN

Glioblastoma is the most common cancer in the brain, resistant to conventional therapy and prone to recurrence. Therefore, it is crucial to explore novel therapeutics strategies for the treatment and prognosis of GBM. In this study, through analyzing online datasets, we elucidated the expression and prognostic value of POLR2J and its co-expressed genes in GBM patients. Functional experiments, including assays for cell apoptosis and cell migration, were used to explore the effects of POLR2J and vorinostat on the proliferation and migration of GBM cells. The highest overexpression of POLR2J, among all cancer types, was observed in GBM. Furthermore, high expression of POLR2J or its co-expressed genes predicted a poor outcome in GBM patients. DNA replication pathways were significantly enriched in the GBM clinical samples with high POLR2J expression, and POLR2J suppression inhibited proliferation and triggered cell cycle G1/S phase arrest in GBM cells. Moreover, POLR2J silencing activated the unfolded protein response (UPR) and significantly enhanced the anti-GBM activity of vorinostat by suppressing cell proliferation and inducing apoptosis. Additionally, POLR2J could interact with STAT3 to promote the metastatic potential of GBM cells. Our study identifies POLR2J as a novel oncogene in GBM progression and provides a promising strategy for the chemotherapeutic treatment of GBM.

3.
BMC Pulm Med ; 24(1): 220, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38702679

RESUMEN

BACKGROUND: Recent research suggests that periodontitis can increase the risk of chronic obstructive pulmonary disease (COPD). In this study, we performed two-sample Mendelian randomization (MR) and investigated the causal effect of periodontitis (PD) on the genetic prediction of COPD. The study aimed to estimate how exposures affected outcomes. METHODS: Published data from the Gene-Lifestyle Interaction in the Dental Endpoints (GLIDE) Consortium's genome-wide association studies (GWAS) for periodontitis (17,353 cases and 28,210 controls) and COPD (16,488 cases and 169,688 controls) from European ancestry were utilized. This study employed a two-sample MR analysis approach and applied several complementary methods, including weighted median, inverse variance weighted (IVW), and MR-Egger regression. Multivariable Mendelian randomization (MVMR) analysis was further conducted to mitigate the influence of smoking on COPD. RESULTS: We chose five single-nucleotide polymorphisms (SNPs) as instrumental variables for periodontitis. A strong genetically predicted causal link between periodontitis and COPD, that is, periodontitis as an independent risk factor for COPD was detected. PD (OR = 1.102951, 95% CI: 1.005-1.211, p = 0.039) MR-Egger regression and weighted median analysis results were coincident with those of the IVW method. According to the sensitivity analysis, horizontal pleiotropy's effect on causal estimations seemed unlikely. However, reverse MR analysis revealed no significant genetic causal association between COPD and periodontitis. IVW (OR = 1.048 > 1, 95%CI: 0.973-1.128, p = 0.2082) MR Egger (OR = 0.826, 95%CI:0.658-1.037, p = 0.1104) and weighted median (OR = 1.043, 95%CI: 0.941-1.156, p = 0.4239). The results of multivariable Mendelian randomization (MVMR) analysis, after adjusting for the confounding effect of smoking, suggest a potential causal relationship between periodontitis and COPD (P = 0.035). CONCLUSION: In this study, periodontitis was found to be independent of COPD and a significant risk factor, providing new insights into periodontitis-mediated mechanisms underlying COPD development.


Asunto(s)
Estudio de Asociación del Genoma Completo , Análisis de la Aleatorización Mendeliana , Polimorfismo de Nucleótido Simple , Enfermedad Pulmonar Obstructiva Crónica , Fumar , Humanos , Enfermedad Pulmonar Obstructiva Crónica/genética , Enfermedad Pulmonar Obstructiva Crónica/epidemiología , Factores de Riesgo , Fumar/epidemiología , Fumar/efectos adversos , Periodontitis/genética , Periodontitis/epidemiología , Índice de Severidad de la Enfermedad , Predisposición Genética a la Enfermedad , Enfermedades Periodontales/genética , Enfermedades Periodontales/epidemiología
4.
Small ; : e2401308, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38773889

RESUMEN

Incorporating ultralow loading of nanoparticles into polymers has realized increases in dielectric constant and breakdown strength for excellent energy storage. However, there are still a series of tough issues to be dealt with, such as organic solvent uses, which face enormous challenges in scalable preparation. Here, a new strategy of dual in situ synthesis is proposed, namely polymerization of polyethylene terephthalate (PET) synchronizes with growth of calcium borate nanoparticles, making polyester nanocomposites from monomers directly. Importantly, this route is free of organic solvents and surface modification of nanoparticles, which is readily accessible to scalable synthesis of polyester nanocomposites. Meanwhile, uniform dispersion of as ultralow as 0.1 wt% nanoparticles and intense bonding at interfaces have been observed. Furthermore, the PET-based nanocomposite displays obvious increases in both dielectric constant and breakdown strength as compared to the neat PET. Its maximum discharged energy density reaches 15 J cm-3 at 690 MV m-1 and power density attains 218 MW cm-3 under 150 Ω resistance at 300 MV m-1, which is far superior to the current dielectric polymers that can be produced at large scales. This work presents a scalable, safe, low-cost, and environment-friendly route toward polymer nanocomposites with superior capacitive performance.

5.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 32(2): 617-624, 2024 Apr.
Artículo en Chino | MEDLINE | ID: mdl-38660875

RESUMEN

OBJECTIVE: To establish a mesenchymal stem cell(MSC)-based in vitro cell model for the evaluation of mouse bone marrow acute graft-versus-host disease (aGVHD). METHODS: Female C57BL/6N mice aged 6-8 weeks were used as bone marrow and lymphocyte donors, and female BALB/c mice aged 6-8 weeks were used as aGVHD recipients. The recipient mouse received a lethal dose (8.0 Gy,72.76 cGy/min) of total body γ irradiation, and injected with donor mouse derived bone marrow cells (1×107/mouse) in 6-8 hours post irradiation to establish a bone marrow transplantation (BMT) mouse model (n=20). In addition, the recipient mice received a lethal dose (8.0 Gy,72.76 cGy/min) of total body γ irradiation, and injected with donor mouse derived bone marrow cells (1×107/mouse) and spleen lymphocytes (2×106/mouse) in 6-8 hours post irradiation to establish a mouse aGVHD model (n=20). On the day 7 after modeling, the recipient mice were anesthetized and the blood was harvested post eyeball enucleation. The serum was collected by centrifugation. Mouse MSCs were isolated and cultured with the addition of 2%, 5%, and 10% recipient serum from BMT group or aGVHD group respectively. The colony-forming unit-fibroblast(CFU-F) experiment was performed to evaluate the potential effects of serums on the self-renewal ability of MSC. The expression of CD29 and CD105 of MSC was evaluated by immunofluorescence staining. In addition, the expression of self-renewal-related genes including Oct-4, Sox-2, and Nanog in MSC was detected by real-time fluorescence quantitative PCR(RT-qPCR). RESULTS: We successfully established an in vitro cell model that could mimic the bone marrow microenvironment damage of the mouse with aGVHD. CFU-F assay showed that, on day 7 after the culture, compared with the BMT group, MSC colony formation ability of aGVHD serum concentrations groups of 2% and 5% was significantly reduced (P < 0.05); after the culture, at day 14, compared with the BMT group, MSC colony formation ability in different aGVHD serum concentration was significantly reduced (P < 0.05). The immunofluorescence staining showed that, compared with the BMT group, the proportion of MSC surface molecules CD29+ and CD105+ cells was significantly dereased in the aGVHD serum concentration group (P < 0.05), the most significant difference was at a serum concentration of 10% (P < 0.001, P < 0.01). The results of RT-qPCR detection showed that the expression of the MSC self-renewal-related genes Oct-4, Sox-2, and Nanog was decreased, the most significant difference was observed at an aGVHD serum concentration of 10% (P < 0.01,P < 0.001,P < 0.001). CONCLUSION: By co-culturing different concentrations of mouse aGVHD serum and mouse MSC, we found that the addition of mouse aGVHD serum at different concentrations impaired the MSC self-renewal ability, which providing a new tool for the field of aGVHD bone marrow microenvironment damage.


Asunto(s)
Trasplante de Médula Ósea , Modelos Animales de Enfermedad , Enfermedad Injerto contra Huésped , Células Madre Mesenquimatosas , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Animales , Ratones , Femenino , Células Madre Mesenquimatosas/citología , Células de la Médula Ósea/citología , Microambiente Celular , Médula Ósea , Ratas
6.
BMC Geriatr ; 24(1): 222, 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38439017

RESUMEN

BACKGROUND: This study aimed to investigate the association of high-sensitivity C-reactive protein (hs-CRP) with incident frailty as well as its effects on pre-frailty progression and regression among middle-aged and older adults. METHODS: Based on the frailty index (FI) calculated with 41 items, 6890 eligible participants without frailty at baseline from China Health and Retirement Longitudinal Study (CHARLS) were categorized into health, pre-frailty, and frailty groups. Logistic regression models were used to estimate the longitudinal association between baseline hs-CRP and incident frailty. Furthermore, a series of genetic approaches were conducted to confirm the causal relationship between CRP and frailty, including Linkage disequilibrium score regression (LDSC), pleiotropic analysis, and Mendelian randomization (MR). Finally, we evaluated the association of hs-CRP with pre-frailty progression and regression. RESULTS: The risk of developing frailty was 1.18 times (95% CI: 1.03-1.34) higher in participants with high levels of hs-CRP at baseline than low levels of hs-CRP participants during the 3-year follow-up. MR analysis suggested that genetically determined hs-CRP was potentially positively associated with the risk of frailty (OR: 1.06, 95% CI: 1.03-1.08). Among 5241 participants with pre-frailty at baseline, we found pre-frailty participants with high levels of hs-CRP exhibit increased odds of progression to frailty (OR: 1.39, 95% CI: 1.09-1.79) and decreased odds of regression to health (OR: 0.84, 95% CI: 0.72-0.98) when compared with participants with low levels of hs-CRP. CONCLUSIONS: Our results suggest that reducing systemic inflammation is significant for developing strategies for frailty prevention and pre-frailty reversion in the middle-aged and elderly population.


Asunto(s)
Proteína C-Reactiva , Fragilidad , Anciano , Humanos , Persona de Mediana Edad , Estudios Longitudinales , Proteína C-Reactiva/genética , Fragilidad/diagnóstico , Fragilidad/epidemiología , Fragilidad/genética , Estudios de Cohortes , Inflamación
7.
J Chem Inf Model ; 64(8): 3400-3410, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38537611

RESUMEN

Lactobacillus kefir alcohol dehydrogenase (LkADH) and ketoreductase from Chryseobacterium sp. CA49 (ChKRED12) exhibit different chemoselectivity and stereoselectivity toward a substrate with both keto and aldehyde carbonyl groups. LkADH selectively reduces the keto carbonyl group while retaining the aldehyde carbonyl group, producing optically pure R-alcohols. In contrast, ChKRED12 selectively reduces the aldehyde group and exhibits low reactivity toward ketone carbonyls. This study investigated the structural basis for these differences and the role of specific residues in the active site. Molecular dynamics (MD) simulations and quantum chemical calculations were used to investigate the interactions between the substrate and the enzymes and the essential cause of this phenomenon. The present study has revealed that LkADH and ChKRED12 exhibit significant differences in the structure of their respective active pockets, which is a crucial determinant of their distinct chemoselectivity toward the same substrate. Moreover, residues N89, N113, and E144 within LkADH as well as Q151 and D190 within ChKRED12 have been identified as key contributors to substrate stabilization within the active pocket through electrostatic interactions and van der Waals forces, followed by hydride transfer utilizing the coenzyme NADPH. Furthermore, the enantioselectivity mechanism of LkADH has been elucidated using quantum chemical methods. Overall, these findings not only provide fundamental insights into the underlying reasons for the observed differences in selectivity but also offer a detailed mechanistic understanding of the catalytic reaction.


Asunto(s)
Aldehídos , Cetonas , Simulación de Dinámica Molecular , Cetonas/química , Cetonas/metabolismo , Aldehídos/química , Aldehídos/metabolismo , Especificidad por Sustrato , Teoría Cuántica , Lactobacillus/enzimología , Lactobacillus/metabolismo , Dominio Catalítico , Alcohol Deshidrogenasa/metabolismo , Alcohol Deshidrogenasa/química
8.
Huan Jing Ke Xue ; 45(3): 1480-1491, 2024 Mar 08.
Artículo en Chino | MEDLINE | ID: mdl-38471863

RESUMEN

Antibiotic pollution in the environment has a negative impact on ecosystem security. Taking the Oujiang River Basin as an example,high-performance liquid chromatography mass spectrometry(LC-MS)was used to detect the concentration of six classes of 35 antibiotics in the surface water of the southern Zhejiang River Basin. The concentration level and spatial distribution of antibiotics were analyzed,the risk of antibiotics to ecology and human health were assessed using relevant models,and the sources of antibiotics were discussed. The results showed that in 20 sampling sites,a total of four classes of 12 antibiotics were detected,including sulfonamides,quinolones,tetracyclines,and lincosamides. The total concentration was ND-1 018 ng·L-1. The highest detection rate was that of Lincomycin(90.48%),followed by that of sulfapyridine(38.10%). The three antibiotics with the highest average concentrations were ofloxacin(12.49 ng·L-1),Lincomycin(11.08 ng·L-1),and difloxacin(7.38 ng·L-1). Antibiotics in the basin showed mainly spotty pollution,which had large spatial differentiation. The average concentration of antibiotics in the upstream(54.39 ng·L-1)was higher than that mid-downstream(46.64 ng·L-1). The degree of antibiotic pollution from upstream to downstream showed a characteristic of being "sparse in the upstream and dense in the downstream. " This indicated that the concentration of antibiotics in the upstream was significantly different,whereas the pollution degree of antibiotics in the downstream was uniform. The upstream was mainly polluted by health,livestock,and poultry breeding wastewater emissions,and downstream pollution was mainly caused by densely populated activities and the rapid development of economy,trade,and industry. The ecological risk assessment results showed that the upstream site H6 had the highest risk quotient,ofloxacin and enrofloxacin had high risk levels, and lincomycin had a moderate risk level. Health risk assessment results showed that the Oujiang River surface water antibiotics posed no risk to human health.


Asunto(s)
Antibacterianos , Contaminantes Químicos del Agua , Humanos , Antibacterianos/análisis , Ecosistema , Monitoreo del Ambiente/métodos , Ofloxacino/análisis , Lincomicina , Medición de Riesgo , Agua/análisis , China , Contaminantes Químicos del Agua/análisis
9.
Int J Hematol ; 119(5): 541-551, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38530586

RESUMEN

This study investigated the effect of rapamycin alone and in combination with chemotherapy (doxorubicin and cytarabine) on AML. Human acute monocytic leukemia cell line SHI-1 and NPG AML model mice created by intravenous injection of SHI-1 cell were treated with rapamycin, chemotherapy, or rapamycin plus chemotherapy. Analysis by cell counting kit-8, western blot, flow cytometry, and immunohistochemistry was performed, and results suggested that both rapamycin and chemotherapy inhibited proliferation of SHI-1 cells both in vitro and in vivo, suppressed neoplasm growth in vivo, and promoted survival of NPG AML mice. The antitumor effect of rapamycin plus chemotherapy was better than that of rapamycin alone and chemotherapy alone. In addition, western blot results demonstrated that rapamycin inhibited the phosphorylation of mTOR downstream targets 4EBP1 and S6K1 in SHI-1 cells, and increased the pro-apoptosis-related protein Bax and autophagy-associated proteins Beclin-1, LC3B-II, and ATG5 while reducing the anti-apoptosis-related protein Bcl-2. In conclusion, the results of this study indicate that rapamycin acts synergistically with doxorubicin and cytarabine in AML treatment, and its underlying mechanism might be associated with mTORC1 pathway-mediated apoptosis and autophagy.


Asunto(s)
Apoptosis , Autofagia , Doxorrubicina , Diana Mecanicista del Complejo 1 de la Rapamicina , Transducción de Señal , Sirolimus , Animales , Autofagia/efectos de los fármacos , Apoptosis/efectos de los fármacos , Humanos , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Ratones , Sirolimus/farmacología , Línea Celular Tumoral , Doxorrubicina/farmacología , Transducción de Señal/efectos de los fármacos , Citarabina/farmacología , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patología , Sinergismo Farmacológico , Ensayos Antitumor por Modelo de Xenoinjerto , Proliferación Celular/efectos de los fármacos , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico
11.
Opt Express ; 32(2): 2746-2765, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38297796

RESUMEN

In this paper, we investigate the optical nondegenerate solitons in a birefringent fiber with a 35 degree elliptical angle. We derive the nondegenerate bright one- and two-soliton solutions by solving the coupled Schrödinger equation. The formation of nondegenerate solitons is related to the wave numbers of the solitons, and we further demonstrate that it is caused by the incoherent addition of different components. We note that the interaction between two degenerate solitons or a nondegenerate soliton and a degenerate soliton is usually inelastic. This is led to the incoherent interaction between solitons of different components and the coherent interaction between solitons of the same component. Through the asymptotic analysis, we find that the two degenerate solitons are elastic interactions under certain conditions, and analyzed the influence of the Kerr nonlinear intensity coefficient γ and the second-order group velocity dispersion ß2 in this system on solitons: the velocity and amplitude of the solitons are proportional to |ß2|, while the amplitude of the solitons is inversely proportional to γ. Two nondegenerate solitons are elastic interactions, but the phase of the soliton can be adjusted to make it inelastic. Furthermore, regardless of the situation mentioned above, total intensities of the solitons before the interaction are equal to that after the soliton interaction.

12.
Inorg Chem ; 63(10): 4636-4645, 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38394612

RESUMEN

Two-dimensional (2D) metal-organic framework (MOF) nanosheets with large surface area, ultrathin thickness, and highly accessible active sites have attracted great research attention. Developing efficient approaches to realize the controllable synthesis of well-defined 2D MOFs with a specific composition and morphology is critical. However, it is still a significant challenge to construct thin and uniform 2D MOF nanosheets and resolve the reagglomeration as well as poor stability of target 2D MOF products. Here, an "in situ exfoliation growth" strategy is proposed, where a one-step synthetic process can realize the successful fabrication of PBA/MIL-53(NiFe)/NF nanosheets on the surface of nickel foam (NF) via in situ conversion and exfoliation growth strategies. The PBA/MIL-53(NiFe)/NF nanosheets combine the individual advantages of MOFs, Prussian blue analogues (PBAs), and 2D materials. As expected, the resulting PBA/MIL-53(NiFe)/NF as a glucose electrode exhibits an extremely high sensitivity of 25.74 mA mM-1 cm-2 in a very wide concentration range of 180 nM to 4.8 µM. The present exciting work provides a simple and effective strategy for the construction of high-performance nonenzymatic glucose electrochemical biosensors.

13.
Sensors (Basel) ; 24(3)2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38339625

RESUMEN

The design, especially the numerical calibration, of a circular touch mode capacitive pressure sensor is highly dependent on the accuracy of the analytical solution of the contact problem between the circular conductive membrane and the rigid plate of the sensor. In this paper, the plate/membrane contact problem is reformulated using a more accurate in-plane equilibrium equation, and a new and more accurate analytical solution is presented. On this basis, the design and numerical calibration theory for circular touch mode capacitive pressure sensors has been greatly improved and perfected. The analytical relationships of pressure and capacitance are numerically calculated using the new and previous analytical solutions, and the gradually increasing difference between the two numerical calculation results with the gradual increase in the applied pressure is graphically shown. How to use analytical solutions and analytical relationships to design and numerically calibrate a circular touch mode capacitive pressure sensor with a specified pressure detecting range is illustrated in detail. The effect of changing design parameters on capacitance-pressure analytical relationships is comprehensively investigated; thus, the direction of changing design parameters to meet the required or desired range of pressure or capacitance is clarified.

14.
Endocr Res ; 49(2): 92-105, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38288985

RESUMEN

Purpose:Osteoporosis is characterized by low bone mineral density (BMD) and high risk of osteoporotic fracture (OF). Peripheral blood monocytes (PBM) can differentiate into osteoclasts to resorb bone. This study was to identify PBM-expressed proteins significant for osteoporosis in Chinese Han elderly population (>65 years), and focused on two phenotypes of osteoporosis: low BMD and OF. METHODS: Label-free quantitative proteomics was employed to profile PBM proteome and to identify differentially expressed proteins (DEPs) between OF (N=27) vs. non-fractured (NF, N=24) subjects and between low BMD (N=12) vs. high BMD (N=12) subjects in women. Western blotting (WB) was conducted to validate differential expression, and ELISA to evaluate translational value for secretory protein of interest. RESULTS: We discovered 59 DEPs with fold change (FC)>1.3 (P<1×10-5), and validated the significant up-regulation of pyruvate kinase isozyme 2 (PKM2) with osteoporosis (P<0.001). PKM2 protein upregulation with OF was replicated with PBM in men (P=0.04). Plasma PKM2 protein level was significantly elevated with OF in an independent sample (N=100, FC=1.68, P=0.01). Pursuant functional assays showed that extracellular PKM2 protein supplement not only promoted monocyte trans-endothelial migration, growth, and osteoclast differentiation (marker gene expression), but also inhibited osteoblast growth, differentiation (ALP gene expression), and activity. CONCLUSION: The above findings suggest that PKM2 protein is a novel osteoporosis-associated functional protein in Chinese Han elderly population. It may serve as a risk biomarker and drug target for osteoporosis.


Asunto(s)
Densidad Ósea , Osteoporosis , Piruvato Quinasa , Anciano , Anciano de 80 o más Años , Femenino , Humanos , Masculino , Proteínas Portadoras/metabolismo , China , Pueblos del Este de Asia , Monocitos/metabolismo , Fracturas Osteoporóticas , Piruvato Quinasa/metabolismo
15.
Anal Methods ; 16(3): 420-426, 2024 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-38165136

RESUMEN

The efficient extraction of phthalic acid esters (PAEs) is challenging due to their extremely low concentration, complicated matrices and hydrophilicity. Herein, hollow microspheres, as an ideal coating, possess significant potential for solid-phase microextraction (SPME) due to their fascinating properties. In this study, multiwalled carbon nanotube hollow microspheres (MWCNT-HMs) were utilized as a fiber coating for the SPME of PAEs from tea beverages. MWCNT-HMs were obtained by dissolving the polystyrene (PS) cores with organic solvents. Interestingly, MWCNT-HMs well maintain the morphology of the MWCNTs@PS precursors. The layer-by-layer (LBL) assembly of MWCNTs on PS microsphere templates was achieved through electrostatic interactions. Six PAEs, di-ethyl phthalate (DEP), di-iso-butyl phthalate (DIBP), di-n-butyl phthalate (DBP), benzyl butyl phthalate (BBP), di-2-ethylhexyl phthalate (DEHP) and di-n-octyl phthalate (DOP), were selected as target analytes for assessing the efficiency of the coating for SPME. The stirring rate, sample solution pH and extraction time were optimized by using the Box-Behnken design. Under optimal working conditions, the proposed MWCNT-HMs/SPME was coupled with gas chromatography-tandem mass spectrometry (GC-MS/MS) to achieve high enrichment factors (118-2137), wide linearity (0.0004-10 µg L-1), low limits of detection (0.00011-0.0026 µg L-1) and acceptable recovery (80.2-108.5%) for the detection of PAEs. Therefore, the MWCNT-HM coated fibers are promising alternatives in the SPME method for the sensitive detection of PAEs at trace levels in tea beverages.


Asunto(s)
Nanotubos de Carbono , Ácidos Ftálicos , Microextracción en Fase Sólida/métodos , Microesferas , Cromatografía de Gases y Espectrometría de Masas/métodos , Espectrometría de Masas en Tándem , Ácidos Ftálicos/análisis , Ácidos Ftálicos/química , Bebidas/análisis ,
16.
J Diabetes Investig ; 15(1): 78-86, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37803908

RESUMEN

BACKGROUND: This study aimed to investigate the effect of systemic inflammation, assessed by high sensitivity C-reactive protein (hs-CRP) levels, on prediabetes progression and regression in middle-aged and older adults based on the China Health and Retirement Longitudinal Study (CHARLS). METHODS: Participants with prediabetes from CHARLS were followed up 4 years later with blood samples collected for measuring fasting plasma glucose (FPG) and hemoglobin A1c (HbA1c). The level of hs-CRP was assessed at baseline and categorized into tertiles (low, middle, and high groups). Prediabetes at baseline and follow-up was defined primarily according to the American Diabetes Association (ADA) criteria. Logistic regression models were used to estimate the odds ratios (ORs) and confidence intervals (CIs). We also performed stratified analyses according to age, gender, BMI, the presence of hypertension, and the disease history of heart disease and dyslipidemia and sensitivity analyses excluding a subset of participants with incomplete data. RESULTS: Of the 2,874 prediabetes included at baseline, 834 participants remained as having prediabetes, 146 progressed to diabetes, and 1,894 regressed to normoglycemia based on ADA criteria with a 4 year follow-up. After multivariate logistics regression analysis, prediabetes with middle (0.67-1.62 mg/L) and high (>1.62 mg/L) hs-CRP levels had an increased incidence of progressing to diabetes compared with prediabetes with low hs-CRP levels (<0.67 mg/L; OR = 1.846, 95%CI: 1.129-3.018; and OR = 1.632, 95%CI: 0.985-2.703, respectively), and the incidence of regressing to normoglycemia decreased (OR = 0.793, 95%CI: 0.645-0.975; and OR = 0.769, 95%CI: 0.623-0.978, respectively). Stratified analyses and sensitivity analyses showed consistent results. CONCLUSIONS: Low levels of hs-CRP are associated with a high incidence of regression from prediabetes to normoglycemia and reduced odds of progression to diabetes.


Asunto(s)
Estado Prediabético , Persona de Mediana Edad , Humanos , Anciano , Proteína C-Reactiva/metabolismo , Glucemia/análisis , Estudios Longitudinales , Estudios Prospectivos , Factores de Riesgo
17.
Artículo en Inglés | MEDLINE | ID: mdl-38134301

RESUMEN

Telomere shortening is an important sign and driving factor of aging, but its association mechanisms and causal effects with other aging-related biochemical hallmarks are largely unknown. This study first performed comprehensive genetic analyses (eg, shared genetic analysis, pleiotropic analysis, and gene enrichment analysis) to detect the underlying molecular mechanisms for the associations between telomere length (TL) and aging-related biochemical hallmarks. Then, further bidirectional Mendelian randomization (MR) analyses investigated the causal effects between TL and other biochemical hallmarks. The genetic correlations were negative between TL and growth differentiation factor-15 (GDF15) (p = .024), C-reactive protein (p = .007), hemoglobin A1c (p = .007), and red blood cell (RBC) (p = .022), but positive between TL and insulin-like growth factor 1 (IGF-1) (p = .002) and white blood cell counts (p = .007). The increased TL has causal effects on the low levels of GDF15 (p = 3.73E-06), sex hormone binding globulin (p = 6.30E-06), testosterone (p = 5.56E-07), fasting insulin (p = 2.67E-05), and RBC (p = 1.54E-05), but the higher levels of IGF-1 (p = 3.24E-07). In conclusion, the observed phenotypic correlations between TL and aging-related biochemical hallmarks may arise from a combination of shared genetic components and causal effects. Telomere length is regarded as a driving hallmark for aging-related biochemical hallmarks.


Asunto(s)
Factor I del Crecimiento Similar a la Insulina , Homeostasis del Telómero , Homeostasis del Telómero/genética , Factor I del Crecimiento Similar a la Insulina/genética , Acortamiento del Telómero/genética , Telómero/genética , Estudio de Asociación del Genoma Completo
18.
Stem Cells ; 42(4): 360-373, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38153253

RESUMEN

Recent investigations have shown that the necroptosis of tissue cells in joints is important in the development of osteoarthritis (OA). This study aimed to investigate the potential effects of exogenous skeletal stem cells (SSCs) on the necroptosis of subchondral osteoblasts in OA. Human SSCs and subchondral osteoblasts isolated from human tibia plateaus were used for Western blotting, real-time PCR, RNA sequencing, gene editing, and necroptosis detection assays. In addition, the rat anterior cruciate ligament transection OA model was used to evaluate the effects of SSCs on osteoblast necroptosis in vivo. The micro-CT and pathological data showed that intra-articular injections of SSCs significantly improved the microarchitecture of subchondral trabecular bones in OA rats. Additionally, SSCs inhibited the necroptosis of subchondral osteoblasts in OA rats and necroptotic cell models. The results of bulk RNA sequencing of SSCs stimulated or not by tumor necrosis factor α suggested a correlation of SSCs-derived tumor necrosis factor α-induced protein 3 (TNFAIP3) and cell necroptosis. Furthermore, TNFAIP3-derived from SSCs contributed to the inhibition of the subchondral osteoblast necroptosis in vivo and in vitro. Moreover, the intra-articular injections of TNFAIP3-overexpressing SSCs further improved the subchondral trabecular bone remodeling of OA rats. Thus, we report that TNFAIP3 from SSCs contributed to the suppression of the subchondral osteoblast necroptosis, which suggests that necroptotic subchondral osteoblasts in joints may be possible targets to treat OA by stem cell therapy.


Asunto(s)
Osteoartritis , Proteína 3 Inducida por el Factor de Necrosis Tumoral alfa , Animales , Humanos , Ratas , Necroptosis , Osteoartritis/metabolismo , Osteoartritis/patología , Osteoartritis/terapia , Osteoblastos/metabolismo , Osteoblastos/patología , Células Madre/metabolismo , Proteína 3 Inducida por el Factor de Necrosis Tumoral alfa/metabolismo , Proteína 3 Inducida por el Factor de Necrosis Tumoral alfa/farmacología
19.
Int J Biol Macromol ; 253(Pt 7): 127554, 2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-37865359

RESUMEN

Urolithin A (UroA) is gut metabolites of ellagitannins possessing a vast range of biological activities, but its poor water solubility and low bioavailability hinder its potential applications. This study utilized the pH dependent dissolution characteristics of UroA and employed a simple pH-driven method to load UroA into liposomes. The characterization and stability of obtained liposomes under different conditions were evaluated, and their oral bioavailability was tested by pharmacokinetics, and compared with UroA liposomes prepared using traditional thin film dispersion (TFM-ULs). Results indicated that liposomes could effectively encapsulate UroA. The UroA liposomes prepared by the pH-driven method (PDM-ULs) showed lower particle size, polydispersity index, zeta potential, and higher encapsulation efficiency than TFM-ULs. Interestingly, better thermal stability, storage stability, in vitro digestion stability, and higher bioaccessibility were also found on PDM-ULs. Moreover, pharmacokinetic experiments in rats demonstrated that PDM-ULs could significantly improve the bioavailability of UroA, with an absorption efficiency 1.91 times that of TFM-ULs. Therefore, our findings suggest that liposomes prepared by pH-driven methods have great potential in improving the stability and bioavailability of UroA.


Asunto(s)
Cumarinas , Liposomas , Ratas , Animales , Disponibilidad Biológica , Concentración de Iones de Hidrógeno , Tamaño de la Partícula
20.
RSC Adv ; 13(42): 29408-29418, 2023 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-37818274

RESUMEN

Quinoa saponins have outstanding activity, and there are an increasing number of extraction methods, but there are few research programs on green preparation technology. The extraction conditions of quinoa saponins with deep eutectic solvents (DESs) were optimized by single-factor experiments combined with response surface methodology. The antioxidant capacity of saponins extracted by DESs and traditional methods was evaluated by the DPPH clearance rate, iron ion chelation rate and potassium ferricyanide reducing power. The results show that the optimal DES is choline chloride: 1,2-propylene glycol (1 : 1), and its water content is 40%. The optimal extraction conditions were as follows: the solid-to-solvent ratio was 0.05 g mL-1, the extraction time was 89 min, and the extraction temperature was 75 °C. Under these conditions, the extraction of quinoa saponins by DES was more effective than the traditional extraction methods. The saponins extracted by DES and traditional methods were analyzed by UPLC-MS, and five main saponins were identified. Quantitative analysis by HPLC-UV showed that Q1 (m/z = 971) and Q2 (m/z = 809) had higher contents of saponins. In vitro antioxidant experiments showed that all DES saponin extracts showed good antioxidant capacity. This study provides new insight into the development and utilization of quinoa saponins.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...