Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Mol Biol ; : 168545, 2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38508305

RESUMEN

A single protein structure is rarely sufficient to capture the conformational variability of a protein. Both bound and unbound (holo and apo) forms of a protein are essential for understanding its geometry and making meaningful comparisons. Nevertheless, docking or drug design studies often still consider only single protein structures in their holo form, which are for the most part rigid. With the recent explosion in the field of structural biology, large, curated datasets are urgently needed. Here, we use a previously developed application (AHoJ) to perform a comprehensive search for apo-holo pairs for 468,293 biologically relevant protein-ligand interactions across 27,983 proteins. In each search, the binding pocket is captured and mapped across existing structures within the same UniProt, and the mapped pockets are annotated as apo or holo, based on the presence or absence of ligands. We assemble the results into a database, AHoJ-DB (www.apoholo.cz/db), that captures the variability of proteins with identical sequences, thereby exposing the agents responsible for the observed differences in geometry. We report several metrics for each annotated pocket, and we also include binding pockets that form at the interface of multiple chains. Analysis of the database shows that about 24% of the binding sites occur at the interface of two or more chains and that less than 50% of the total binding sites processed have an apo form in the PDB. These results can be used to train and evaluate predictors, discover potentially druggable proteins, and reveal protein- and ligand-specific relationships that were previously obscured by intermittent or partial data. Availability: www.apoholo.cz/db.

2.
Bioinformatics ; 38(24): 5452-5453, 2022 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-36282546

RESUMEN

SUMMARY: Understanding the mechanism of action of a protein or designing better ligands for it, often requires access to a bound (holo) and an unbound (apo) state of the protein. Resources for the quick and easy retrieval of such conformations are severely limited. Apo-Holo Juxtaposition (AHoJ), is a web application for retrieving apo-holo structure pairs for user-defined ligands. Given a query structure and one or more user-specified ligands, it retrieves all other structures of the same protein that feature the same binding site(s), aligns them, and examines the superimposed binding sites to determine whether each structure is apo or holo, in reference to the query. The resulting superimposed datasets of apo-holo pairs can be visualized and downloaded for further analysis. AHoJ accepts multiple input queries, allowing the creation of customized apo-holo datasets. AVAILABILITY AND IMPLEMENTATION: Freely available for non-commercial use at http://apoholo.cz. Source code available at https://github.com/cusbg/AHoJ-project. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Proteínas , Programas Informáticos , Conformación Proteica , Ligandos , Proteínas/química , Sitios de Unión
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...