Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Epigenet ; 10(1): dvae003, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38559770

RESUMEN

Exposure to air pollutants has been associated with adverse health outcomes in adults and children who were prenatally exposed. In addition to reducing exposure to air pollutants, it is important to identify their biologic targets in order to mitigate the health consequences of exposure. One molecular change associated with prenatal exposure to air pollutants is DNA methylation (DNAm), which has been associated with changes in placenta and cord blood tissues at birth. However, little is known about how air pollution exposure impacts the sperm epigenome, which could provide important insights into the mechanism of transmission to offspring. In the present study, we explored whether exposure to particulate matter less than 2.5 microns in diameter, particulate matter less than 10 microns in diameter, nitrogen dioxide (NO2), or ozone (O3) was associated with DNAm in sperm contributed by participants in the Early Autism Risk Longitudinal Investigation prospective pregnancy cohort. Air pollution exposure measurements were calculated as the average exposure for each pollutant measured within 4 weeks prior to the date of sample collection. Using array-based genome-scale methylation analyses, we identified 80, 96, 35, and 67 differentially methylated regions (DMRs) significantly associated with particulate matter less than 2.5 microns in diameter, particulate matter less than 10 microns in diameter, NO2, and O3, respectively. While no DMRs were associated with exposure to all four pollutants, we found that genes overlapping exposure-related DMRs had a shared enrichment for gene ontology biological processes related to neurodevelopment. Together, these data provide compelling support for the hypothesis that paternal exposure to air pollution impacts DNAm in sperm, particularly in regions implicated in neurodevelopment.

2.
Environ Health Insights ; 18: 11786302231225313, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38317694

RESUMEN

Background: Prenatal exposure to metals is hypothesized to be associated with child autism. We aim to investigate the joint and individual effects of prenatal exposure to urine metals including lead (Pb), mercury (Hg), manganese (Mn), and selenium (Se) on child Social Responsiveness Scale (SRS) scores. Methods: We used data from 2 cohorts enriched for likelihood of autism spectrum disorder (ASD): Early Autism Risk Longitudinal Investigation (EARLI) and the Markers of Autism Risk in Babies-Learning Early Signs (MARBLES) studies. Metal concentrations were measured in urine collected during pregnancy. We used Bayesian Kernel Machine Regression and linear regression models to investigate both joint and independent associations of metals with SRS Z-scores in each cohort. We adjusted for maternal age at delivery, interpregnancy interval, maternal education, child race/ethnicity, child sex, and/or study site. Results: The final analytic sample consisted of 251 mother-child pairs. When Pb, Hg, Se, and Mn were at their 75th percentiles, there was a 0.03 increase (95% credible interval [CI]: -0.11, 0.17) in EARLI and 0.07 decrease (95% CI: -0.29, 0.15) in MARBLES in childhood SRS Z-scores, compared to when all 4 metals were at their 50th percentiles. In both cohorts, increasing concentrations of Pb were associated with increasing values of SRS Z-scores, fixing the other metals to their 50th percentiles. However, all the 95% credible intervals contained the null. Conclusions: There were no clear monotonic associations between the overall prenatal metal mixture in pregnancy and childhood SRS Z-scores at 36 months. There were also no clear associations between individual metals within this mixture and childhood SRS Z-scores at 36 months. The overall effects of the metal mixture and the individual effects of each metal within this mixture on offspring SRS Z-scores might be heterogeneous across child sex and cohort. Further studies with larger sample sizes are warranted.

3.
Mol Psychiatry ; 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-38052982

RESUMEN

Maternal educational attainment (MEA) shapes offspring health through multiple potential pathways. Differential DNA methylation may provide a mechanistic understanding of these long-term associations. We aimed to quantify the associations of MEA with offspring DNA methylation levels at birth, in childhood and in adolescence. Using 37 studies from high-income countries, we performed meta-analysis of epigenome-wide association studies (EWAS) to quantify the associations of completed years of MEA at the time of pregnancy with offspring DNA methylation levels at birth (n = 9 881), in childhood (n = 2 017), and adolescence (n = 2 740), adjusting for relevant covariates. MEA was found to be associated with DNA methylation at 473 cytosine-phosphate-guanine sites at birth, one in childhood, and four in adolescence. We observed enrichment for findings from previous EWAS on maternal folate, vitamin-B12 concentrations, maternal smoking, and pre-pregnancy BMI. The associations were directionally consistent with MEA being inversely associated with behaviours including smoking and BMI. Our findings form a bridge between socio-economic factors and biology and highlight potential pathways underlying effects of maternal education. The results broaden our understanding of bio-social associations linked to differential DNA methylation in multiple early stages of life. The data generated also offers an important resource to help a more precise understanding of the social determinants of health.

4.
medRxiv ; 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-38045240

RESUMEN

Background: Autism spectrum disorder (ASD) is a prevalent and heterogeneous neurodevelopmental disorder. Risk is attributed to genetic and prenatal environmental factors, though the environmental agents are incompletely characterized. Methods: In Early Autism Risk Longitudinal Investigation (EARLI) and Markers of Autism Risk in Babies Learning Early Signs (MARBLES), two pregnancy cohorts of siblings of children with ASD, maternal urinary metals concentrations at two time points during pregnancy were measured using inductively coupled plasma mass spectrometry. At age three, clinicians assessed ASD with DSM-5 criteria. Using multivariable log binomial regression, we examined each metal for association with ASD status, adjusting for gestational age at urine sampling, child sex, maternal age, and maternal education, and meta-analyzed across the two cohorts. Results: In EARLI (n=170) 17.6% of children were diagnosed with ASD, and an additional 43.5% were classified as having other non-neurotypical development (Non-TD). In MARBLES (n=156), 22.7% were diagnosed with ASD, while an additional 11.5% had Non-TD. In earlier pregnancy metals measures, having cadmium concentration over the level of detection was associated with 1.78 (1.19, 2.67) times higher risk of ASD, and 1.43 (1.06, 1.92) times higher risk of Non-TD. A doubling of early pregnancy cesium concentration was marginally associated with 1.81 (0.95, 3.42) times higher risk of ASD, and 1.58 (0.95, 2.63) times higher risk of Non-TD. Conclusion: Exposure in utero to elevated levels of cadmium and cesium, as measured in maternal urine collected during pregnancy, was associated with increased risk of developing ASD.

5.
Clin Epigenetics ; 15(1): 148, 2023 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-37697338

RESUMEN

BACKGROUND: Seasonal variations in environmental exposures at birth or during gestation are associated with numerous adult traits and health outcomes later in life. Whether DNA methylation (DNAm) plays a role in the molecular mechanisms underlying the associations between birth season and lifelong phenotypes remains unclear. METHODS: We carried out epigenome-wide meta-analyses within the Pregnancy And Childhood Epigenetic Consortium to identify associations of DNAm with birth season, both at differentially methylated probes (DMPs) and regions (DMRs). Associations were examined at two time points: at birth (21 cohorts, N = 9358) and in children aged 1-11 years (12 cohorts, N = 3610). We conducted meta-analyses to assess the impact of latitude on birth season-specific associations at both time points. RESULTS: We identified associations between birth season and DNAm (False Discovery Rate-adjusted p values < 0.05) at two CpGs at birth (winter-born) and four in the childhood (summer-born) analyses when compared to children born in autumn. Furthermore, we identified twenty-six differentially methylated regions (DMR) at birth (winter-born: 8, spring-born: 15, summer-born: 3) and thirty-two in childhood (winter-born: 12, spring and summer: 10 each) meta-analyses with few overlapping DMRs between the birth seasons or the two time points. The DMRs were associated with genes of known functions in tumorigenesis, psychiatric/neurological disorders, inflammation, or immunity, amongst others. Latitude-stratified meta-analyses [higher (≥ 50°N), lower (< 50°N, northern hemisphere only)] revealed differences in associations between birth season and DNAm by birth latitude. DMR analysis implicated genes with previously reported links to schizophrenia (LAX1), skin disorders (PSORS1C, LTB4R), and airway inflammation including asthma (LTB4R), present only at birth in the higher latitudes (≥ 50°N). CONCLUSIONS: In this large epigenome-wide meta-analysis study, we provide evidence for (i) associations between DNAm and season of birth that are unique for the seasons of the year (temporal effect) and (ii) latitude-dependent variations in the seasonal associations (spatial effect). DNAm could play a role in the molecular mechanisms underlying the effect of birth season on adult health outcomes.


Asunto(s)
Asma , Metilación de ADN , Niño , Preescolar , Humanos , Lactante , Recién Nacido , Carcinogénesis , Inflamación , Estaciones del Año
6.
Mol Psychiatry ; 2023 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-37100868

RESUMEN

There is a need to consider paternal contributions to autism spectrum disorder (ASD) more strongly. Autism etiology is complex, and heritability is not explained by genetics alone. Understanding paternal gametic epigenetic contributions to autism could help fill this knowledge gap. In the present study, we explored whether paternal autistic traits, and the sperm epigenome, were associated with autistic traits in children at 36 months enrolled in the Early Autism Risk Longitudinal Investigation (EARLI) cohort. EARLI is a pregnancy cohort that recruited and enrolled pregnant women in the first half of pregnancy who already had a child with ASD. After maternal enrollment, EARLI fathers were approached and asked to provide a semen specimen. Participants were included in the present study if they had genotyping, sperm methylation data, and Social Responsiveness Scale (SRS) score data available. Using the CHARM array, we performed genome-scale methylation analyses on DNA from semen samples contributed by EARLI fathers. The SRS-a 65-item questionnaire measuring social communication deficits on a quantitative scale-was used to evaluate autistic traits in EARLI fathers (n = 45) and children (n = 31). We identified 94 significant child SRS-associated differentially methylated regions (DMRs), and 14 significant paternal SRS-associated DMRs (fwer p < 0.05). Many child SRS-associated DMRs were annotated to genes implicated in ASD and neurodevelopment. Six DMRs overlapped across the two outcomes (fwer p < 0.1), and, 16 DMRs overlapped with previous child autistic trait findings at 12 months of age (fwer p < 0.05). Child SRS-associated DMRs contained CpG sites independently found to be differentially methylated in postmortem brains of individuals with and without autism. These findings suggest paternal germline methylation is associated with autistic traits in 3-year-old offspring. These prospective results for autism-associated traits, in a cohort with a family history of ASD, highlight the potential importance of sperm epigenetic mechanisms in autism.

7.
Epigenetics ; 18(1): 2179726, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36840948

RESUMEN

The placenta undergoes many changes throughout gestation to support the evolving needs of the foetus. There is also a growing appreciation that male and female foetuses develop differently in utero, with unique epigenetic changes in placental tissue. Here, we report meta-analysed sex-specific associations between gestational age and placental DNA methylation from four cohorts in the National Institutes of Health (NIH) Environmental influences on Child Health Outcomes (ECHO) Programme (355 females/419 males, gestational ages 23-42 weeks). We identified 407 cytosine-guanine dinucleotides (CpGs) in females and 794 in males where placental methylation levels were associated with gestational age. After cell-type adjustment, 55 CpGs in females and 826 in males were significant. These were enriched for biological processes critical to the immune system in females and transmembrane transport in males. Our findings are distinct between the sexes: in females, associations with gestational age are largely explained by differences in placental cellular composition, whereas in males, gestational age is directly associated with numerous alterations in methylation levels.


Asunto(s)
Metilación de ADN , Placenta , Niño , Embarazo , Humanos , Masculino , Femenino , Lactante , Placenta/metabolismo , Edad Gestacional , Epigénesis Genética , Caracteres Sexuales
8.
Autism Res ; 15(12): 2359-2370, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36189953

RESUMEN

Parental age is a known risk factor for autism spectrum disorder (ASD), however, studies to identify the biologic changes underpinning this association are limited. In recent years, "epigenetic clock" algorithms have been developed to estimate biologic age and to evaluate how the epigenetic aging impacts health and disease. In this study, we examined the relationship between parental epigenetic aging and their child's prospective risk of ASD and autism related quantitative traits in the Early Autism Risk Longitudinal Investigation study. Estimates of epigenetic age were computed using three robust clock algorithms and DNA methylation measures from the Infinium HumanMethylation450k platform for maternal blood and paternal blood specimens collected during pregnancy. Epigenetic age acceleration was defined as the residual of regressing chronological age on epigenetic age while accounting for cell type proportions. Multinomial logistic regression and linear regression models were completed adjusting for potential confounders for both maternal epigenetic age acceleration (n = 163) and paternal epigenetic age acceleration (n = 80). We found accelerated epigenetic aging in mothers estimated by Hannum's clock was significantly associated with lower cognitive ability and function in offspring at 12 months, as measured by Mullen Scales of Early Learning scores (ß = -1.66, 95% CI: -3.28, -0.04 for a one-unit increase). We also observed a marginal association between accelerated maternal epigenetic aging by Horvath's clock and increased odds of ASD in offspring at 36 months of age (aOR = 1.12, 95% CI: 0.99, 1.26). By contrast, fathers accelerated aging was marginally associated with decreased ASD risk in their offspring (aOR = 0.83, 95% CI: 0.68, 1.01). Our findings suggest epigenetic aging could play a role in parental age risks on child brain development.


Asunto(s)
Trastorno del Espectro Autista , Productos Biológicos , Niño , Masculino , Embarazo , Femenino , Humanos , Trastorno del Espectro Autista/epidemiología , Trastorno del Espectro Autista/genética , Estudios Prospectivos , Padres , Cognición , Epigénesis Genética
9.
Epigenetics Chromatin ; 15(1): 28, 2022 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-35918756

RESUMEN

BACKGROUND: Prenatal vitamin use is recommended before and during pregnancies for normal fetal development. Prenatal vitamins do not have a standard formulation, but many contain calcium, folic acid, iodine, iron, omega-3 fatty acids, zinc, and vitamins A, B6, B12, and D, and usually they contain higher concentrations of folic acid and iron than regular multivitamins in the US Nutrient levels can impact epigenetic factors such as DNA methylation, but relationships between maternal prenatal vitamin use and DNA methylation have been relatively understudied. We examined use of prenatal vitamins in the first month of pregnancy in relation to cord blood and placenta DNA methylation in two prospective pregnancy cohorts: the Early Autism Risk Longitudinal Investigation (EARLI) and Markers of Autism Risk Learning Early Signs (MARBLES) studies. RESULTS: In placenta, prenatal vitamin intake was marginally associated with -0.52% (95% CI -1.04, 0.01) lower mean array-wide DNA methylation in EARLI, and associated with -0.60% (-1.08, -0.13) lower mean array-wide DNA methylation in MARBLES. There was little consistency in the associations between prenatal vitamin intake and single DNA methylation site effect estimates across cohorts and tissues, with only a few overlapping sites with correlated effect estimates. However, the single DNA methylation sites with p-value < 0.01 (EARLI cord nCpGs = 4068, EARLI placenta nCpGs = 3647, MARBLES cord nCpGs = 4068, MARBLES placenta nCpGs = 9563) were consistently enriched in neuronal developmental pathways. CONCLUSIONS: Together, our findings suggest that prenatal vitamin intake in the first month of pregnancy may be related to lower placental global DNA methylation and related to DNA methylation in brain-related pathways in both placenta and cord blood.


Asunto(s)
Metilación de ADN , Placenta , Femenino , Sangre Fetal/metabolismo , Ácido Fólico/metabolismo , Humanos , Hierro/metabolismo , Placenta/metabolismo , Embarazo , Estudios Prospectivos , Vitaminas
10.
Front Genet ; 13: 929416, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35836579

RESUMEN

In utero air pollution exposure has been associated with adverse birth outcomes, yet effects of air pollutants on regulatory mechanisms in fetal growth and critical windows of vulnerability during pregnancy are not well understood. There is evidence that epigenetic alterations may contribute to these effects. DNA methylation (DNAm) based age estimators have been developed and studied extensively with health outcomes in recent years. Growing literature suggests environmental factors, such as air pollution and smoking, can influence epigenetic aging. However, little is known about the effect of prenatal air pollution exposure on epigenetic aging. In this study, we leveraged existing data on prenatal air pollution exposure and cord blood DNAm from 332 mother-child pairs in the Early Autism Risk Longitudinal Investigation (EARLI) and Markers of Autism Risk in Babies-Learning Early Signs (MARBLES), two pregnancy cohorts enrolling women who had a previous child diagnosed with autism spectrum disorder, to assess the relationship of prenatal exposure to air pollution and epigenetic aging at birth. DNAm age was computed using existing epigenetic clock algorithms for cord blood tissue-Knight and Bohlin. Epigenetic age acceleration was defined as the residual of regressing chronological gestational age on DNAm age, accounting for cell type proportions. Multivariable linear regression models and distributed lag models (DLMs), adjusting for child sex, maternal race/ethnicity, study sites, year of birth, maternal education, were completed. In the single-pollutant analysis, we observed exposure to PM2.5, PM10, and O3 during preconception period and pregnancy period were associated with decelerated epigenetic aging at birth. For example, pregnancy average PM10 exposure (per 10 unit increase) was associated with epigenetic age deceleration at birth (weeks) for both Knight and Bohlin clocks (ß = -0.62, 95% CI: -1.17, -0.06; ß = -0.32, 95% CI: -0.63, -0.01, respectively). Weekly DLMs revealed that increasing PM2.5 during the first trimester and second trimester were associated with decelerated epigenetic aging and that increasing PM10 during the preconception period was associated with decelerated epigenetic aging, using the Bohlin clock estimate. Prenatal ambient air pollution exposure, particularly in early and mid-pregnancy, was associated with decelerated epigenetic aging at birth.

11.
Mutat Res Rev Mutat Res ; 789: 108415, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35690418

RESUMEN

BACKGROUND: Among children, sex-specific differences in disease prevalence, age of onset, and susceptibility have been observed in health conditions including asthma, immune response, metabolic health, some pediatric and adult cancers, and psychiatric disorders. Epigenetic modifications such as DNA methylation may play a role in the sexual differences observed in diseases and other physiological traits. METHODS: We performed a meta-analysis of the association of sex and cord blood DNA methylation at over 450,000 CpG sites in 8438 newborns from 17 cohorts participating in the Pregnancy And Childhood Epigenetics (PACE) Consortium. We also examined associations of child sex with DNA methylation in older children ages 5.5-10 years from 8 cohorts (n = 4268). RESULTS: In newborn blood, sex was associated at Bonferroni level significance with differences in DNA methylation at 46,979 autosomal CpG sites (p < 1.3 × 10-7) after adjusting for white blood cell proportions and batch. Most of those sites had lower methylation levels in males than in females. Of the differentially methylated CpG sites identified in newborn blood, 68% (31,727) met look-up level significance (p < 1.1 × 10-6) in older children and had methylation differences in the same direction. CONCLUSIONS: This is a large-scale meta-analysis examining sex differences in DNA methylation in newborns and older children. Expanding upon previous studies, we replicated previous findings and identified additional autosomal sites with sex-specific differences in DNA methylation. Differentially methylated sites were enriched in genes involved in cancer, psychiatric disorders, and cardiovascular phenotypes.


Asunto(s)
Metilación de ADN , Epigenoma , Adolescente , Niño , Metilación de ADN/genética , Epigénesis Genética , Epigenómica , Femenino , Humanos , Recién Nacido , Masculino , Embarazo , Caracteres Sexuales
12.
Genome Biol ; 23(1): 46, 2022 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-35168652

RESUMEN

BACKGROUND: Autism spectrum disorder (ASD) involves complex genetics interacting with the perinatal environment, complicating the discovery of common genetic risk. The epigenetic layer of DNA methylation shows dynamic developmental changes and molecular memory of in utero experiences, particularly in placenta, a fetal tissue discarded at birth. However, current array-based methods to identify novel ASD risk genes lack coverage of the most structurally and epigenetically variable regions of the human genome. RESULTS: We use whole genome bisulfite sequencing in placenta samples from prospective ASD studies to discover a previously uncharacterized ASD risk gene, LOC105373085, renamed NHIP. Out of 134 differentially methylated regions associated with ASD in placental samples, a cluster at 22q13.33 corresponds to a 118-kb hypomethylated block that replicates in two additional cohorts. Within this locus, NHIP is functionally characterized as a nuclear peptide-encoding transcript with high expression in brain, and increased expression following neuronal differentiation or hypoxia, but decreased expression in ASD placenta and brain. NHIP overexpression increases cellular proliferation and alters expression of genes regulating synapses and neurogenesis, overlapping significantly with known ASD risk genes and NHIP-associated genes in ASD brain. A common structural variant disrupting the proximity of NHIP to a fetal brain enhancer is associated with NHIP expression and methylation levels and ASD risk, demonstrating a common genetic influence. CONCLUSIONS: Together, these results identify and initially characterize a novel environmentally responsive ASD risk gene relevant to brain development in a hitherto under-characterized region of the human genome.


Asunto(s)
Trastorno del Espectro Autista , Trastorno Autístico , Trastorno del Espectro Autista/genética , Trastorno Autístico/complicaciones , Trastorno Autístico/genética , Trastorno Autístico/metabolismo , Encéfalo/metabolismo , Metilación de ADN , Epigénesis Genética , Epigenoma , Femenino , Genes Reguladores , Humanos , Recién Nacido , Placenta/metabolismo , Embarazo , Estudios Prospectivos
13.
J Autism Dev Disord ; 52(6): 2801-2811, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34110557

RESUMEN

We examined maternal prenatal vitamin use or supplemental folic acid intake during month one of pregnancy for association with autism spectrum disorder (ASD) in the Early Autism Risk Longitudinal Investigation, an enriched-risk pregnancy cohort. Total folic acid intake was calculated from monthly prenatal vitamins, multivitamins, and other supplement reports. Clinical assessments through age 3 years classified children as ASD (n = 38) or non-ASD (n = 153). In pregnancy month one, prenatal vitamin use (59.7%) was not significantly associated with odds of ASD (OR = 0.70, 95%CI 0.32, 1.53). Sample size was limited and residual confounding was possible. Given the estimated effect sizes in this and previous work, prenatal vitamin intake during early pregnancy could be a clinically useful preventative measure for ASD.


Asunto(s)
Trastorno del Espectro Autista , Trastorno Autístico , Trastorno del Espectro Autista/epidemiología , Niño , Preescolar , Femenino , Ácido Fólico , Humanos , Embarazo , Hermanos , Vitaminas
14.
Epigenetics ; 17(3): 253-268, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-33794742

RESUMEN

The maternal epigenome may be responsive to prenatal metals exposures. We tested whether metals are associated with concurrent differential maternal whole blood DNA methylation. In the Early Autism Risk Longitudinal Investigation cohort, we measured first or second trimester maternal blood metals concentrations (cadmium, lead, mercury, manganese, and selenium) using inductively coupled plasma mass spectrometry. DNA methylation in maternal whole blood was measured on the Illumina 450 K array. A subset sample of 97 women had both measures available for analysis, all of whom did not report smoking during pregnancy. Linear regression was used to test for site-specific associations between individual metals and DNA methylation, adjusting for cell type composition and confounding variables. Discovery gene ontology analysis was conducted on the top 1,000 sites associated with each metal. We observed hypermethylation at 11 DNA methylation sites associated with lead (FDR False Discovery Rate q-value <0.1), near the genes CYP24A1, ASCL2, FAT1, SNX31, NKX6-2, LRC4C, BMP7, HOXC11, PCDH7, ZSCAN18, and VIPR2. Lead-associated sites were enriched (FDR q-value <0.1) for the pathways cell adhesion, nervous system development, and calcium ion binding. Manganese was associated with hypermethylation at four DNA methylation sites (FDR q-value <0.1), one of which was near the gene ARID2. Manganese-associated sites were enriched for cellular metabolism pathways (FDR q-value<0.1). Effect estimates for DNA methylation sites associated (p < 0.05) with cadmium, lead, and manganese were highly correlated (Pearson ρ > 0.86). DNA methylation sites associated with lead and manganese may be potential biomarkers of exposure or implicate downstream gene pathways.


Asunto(s)
Trastorno Autístico , Metilación de ADN , Metales , Embarazo , Trastorno Autístico/genética , Trastorno Autístico/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Epigenoma , Femenino , Genes Homeobox , Proteínas de Homeodominio/genética , Humanos , Metales/sangre , Metales/metabolismo , Metales/toxicidad
15.
Front Mol Neurosci ; 14: 775390, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34899183

RESUMEN

Background: Pregnancy measures of DNA methylation, an epigenetic mark, may be associated with autism spectrum disorder (ASD) development in children. Few ASD studies have considered prospective designs with DNA methylation measured in multiple tissues and tested overlap with ASD genetic risk loci. Objectives: To estimate associations between DNA methylation in maternal blood, cord blood, and placenta and later diagnosis of ASD, and to evaluate enrichment of ASD-associated DNA methylation for known ASD-associated genes. Methods: In the Early Autism Risk Longitudinal Investigation (EARLI), an ASD-enriched risk birth cohort, genome-scale maternal blood (early n = 140 and late n = 75 pregnancy), infant cord blood (n = 133), and placenta (maternal n = 106 and fetal n = 107 compartments) DNA methylation was assessed on the Illumina 450k HumanMethylation array and compared to ASD diagnosis at 36 months of age. Differences in site-specific and global methylation were tested with ASD, as well as enrichment of single site associations for ASD risk genes (n = 881) from the Simons Foundation Autism Research Initiative (SFARI) database. Results: No individual DNA methylation site was associated with ASD at genome-wide significance, however, individual DNA methylation sites nominally associated with ASD (P < 0.05) in each tissue were highly enriched for SFARI genes (cord blood P = 7.9 × 10-29, maternal blood early pregnancy P = 6.1 × 10-27, maternal blood late pregnancy P = 2.8 × 10-16, maternal placenta P = 5.6 × 10-15, fetal placenta P = 1.3 × 10-20). DNA methylation sites nominally associated with ASD across all five tissues overlapped at 144 (29.5%) SFARI genes. Conclusion: DNA methylation sites nominally associated with later ASD diagnosis in multiple tissues were enriched for ASD risk genes. Our multi-tissue study demonstrates the utility of examining DNA methylation prior to ASD diagnosis.

16.
J Neurodev Disord ; 13(1): 30, 2021 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-34429070

RESUMEN

BACKGROUND: Prenatal exposure to air pollutants is associated with increased risk for neurodevelopmental and neurodegenerative disorders. However, few studies have identified transcriptional changes related to air pollutant exposure. METHODS: RNA sequencing was used to examine transcriptomic changes in blood and cerebral cortex of three male and three female mouse neonates prenatally exposed to traffic-related nano-sized particulate matter (nPM) compared to three male and three female mouse neonates prenatally exposed to control filter air. RESULTS: We identified 19 nPM-associated differentially expressed genes (nPM-DEGs) in blood and 124 nPM-DEGs in cerebral cortex. The cerebral cortex transcriptional responses to nPM suggested neuroinflammation involvement, including CREB1, BDNF, and IFNγ genes. Both blood and brain tissues showed nPM transcriptional changes related to DNA damage, oxidative stress, and immune responses. Three blood nPM-DEGs showed a canonical correlation of 0.98 with 14 nPM-DEGS in the cerebral cortex, suggesting a convergence of gene expression changes in blood and cerebral cortex. Exploratory sex-stratified analyses suggested a higher number of nPM-DEGs in female cerebral cortex than male cerebral cortex. The sex-stratified analyses identified 2 nPM-DEGs (Rgl2 and Gm37534) shared between blood and cerebral cortex in a sex-dependent manner. CONCLUSIONS: Our findings suggest that prenatal nPM exposure induces transcriptional changes in the cerebral cortex, some of which are also observed in blood. Further research is needed to replicate nPM-induced transcriptional changes with additional biologically relevant time points for brain development.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Contaminantes Atmosféricos/toxicidad , Contaminación del Aire/efectos adversos , Animales , Corteza Cerebral , Femenino , Masculino , Ratones , Material Particulado/toxicidad , Embarazo , Transcriptoma
17.
Artículo en Inglés | MEDLINE | ID: mdl-33317014

RESUMEN

BACKGROUND: Fetal development involves cellular differentiation and epigenetic changes-complex processes that are sensitive to environmental factors. Maternal nutrient levels during pregnancy affect development, and methylene tetrahydrofolate reductase (MTHFR) is important for processing the nutrient folate. HYPOTHESIS: We hypothesize that supplement intake before pregnancy and maternal genotype are associated with DNA methylation in newborns. METHODS: In the pregnancy cohort, Early Autism Risk Longitudinal Investigation (EARLI), health history, and genotype information was obtained (n = 249 families). Cord blood DNA methylation (n = 130) was measured using the Illumina HumanMethylation450k array and global DNA methylation levels were computed over 455,698 sites. Supplement use preconception and during pregnancy were surveyed at visits during pregnancy. We evaluated associations between maternal preconception supplement intake and global DNA methylation or DNA methylation density distributions of newborn cord blood, stratified by the presence of a variant maternal MTHFR C677T allele. RESULTS: Maternal preconceptional multivitamin intake was associated with cord blood methylation, dependent on maternal MTHFR genotype (interaction term p = 0.013). For mothers without the MTHFR variant allele, multivitamin intake was associated with 0.96% (95% CI: 0.09, 1.83) higher global cord blood methylation (p = 0.04) and was also associated with the cumulative density distribution of methylation (p = 0.03). For mothers with at least one variant allele, multivitamin intake had a null -0.06% (95% CI: -0.45, 0.33) association with global cord blood DNA methylation, and was not associated with the cumulative density distribution (p = 0.37). CONCLUSIONS: We observed that cord blood DNA methylation was associated with maternal supplement exposure preconception and maternal genotype. Genetic context should be considered when assessing DNA methylation effects of modifiable risk factors around the time of pregnancy.


Asunto(s)
Metilación de ADN , Metilenotetrahidrofolato Reductasa (NADPH2) , Niño , Metilación de ADN/genética , Femenino , Sangre Fetal , Genotipo , Humanos , Recién Nacido , Masculino , Metilenotetrahidrofolato Reductasa (NADPH2)/genética , Embarazo , Vitaminas
18.
Genome Med ; 12(1): 88, 2020 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-33054850

RESUMEN

BACKGROUND: Autism spectrum disorder (ASD) is a neurodevelopmental disorder with complex heritability and higher prevalence in males. The neonatal epigenome has the potential to reflect past interactions between genetic and environmental factors during early development and influence future health outcomes. METHODS: We performed whole-genome bisulfite sequencing of 152 umbilical cord blood samples from the MARBLES and EARLI high-familial risk prospective cohorts to identify an epigenomic signature of ASD at birth. Samples were split into discovery and replication sets and stratified by sex, and their DNA methylation profiles were tested for differentially methylated regions (DMRs) between ASD and typically developing control cord blood samples. DMRs were mapped to genes and assessed for enrichment in gene function, tissue expression, chromosome location, and overlap with prior ASD studies. DMR coordinates were tested for enrichment in chromatin states and transcription factor binding motifs. Results were compared between discovery and replication sets and between males and females. RESULTS: We identified DMRs stratified by sex that discriminated ASD from control cord blood samples in discovery and replication sets. At a region level, 7 DMRs in males and 31 DMRs in females replicated across two independent groups of subjects, while 537 DMR genes in males and 1762 DMR genes in females replicated by gene association. These DMR genes were significantly enriched for brain and embryonic expression, X chromosome location, and identification in prior epigenetic studies of ASD in post-mortem brain. In males and females, autosomal ASD DMRs were significantly enriched for promoter and bivalent chromatin states across most cell types, while sex differences were observed for X-linked ASD DMRs. Lastly, these DMRs identified in cord blood were significantly enriched for binding sites of methyl-sensitive transcription factors relevant to fetal brain development. CONCLUSIONS: At birth, prior to the diagnosis of ASD, a distinct DNA methylation signature was detected in cord blood over regulatory regions and genes relevant to early fetal neurodevelopment. Differential cord methylation in ASD supports the developmental and sex-biased etiology of ASD and provides novel insights for early diagnosis and therapy.


Asunto(s)
Trastorno del Espectro Autista/etiología , Metilación de ADN , Epigenoma , Sangre Fetal , Genes Ligados a X , Neurogénesis , Trastorno del Espectro Autista/diagnóstico , Trastorno del Espectro Autista/genética , Biomarcadores , Encéfalo/metabolismo , Preescolar , Biología Computacional/métodos , Epigénesis Genética , Recuento de Eritrocitos , Femenino , Regulación de la Expresión Génica , Humanos , Lactante , Recién Nacido , Aprendizaje Automático , Masculino , Especificidad de Órganos/genética , Pronóstico
19.
Transl Psychiatry ; 10(1): 218, 2020 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-32636363

RESUMEN

Gestational exposure to air pollution increases the risk of autism spectrum disorder and cognitive impairments with unresolved molecular mechanisms. This study exposed C57BL/6J mice throughout gestation to urban-derived nanosized particulate matter (nPM). Young adult male and female offspring were studied for behavioral and metabolic changes using forced swim test, fat gain, glucose tolerance, and hippocampal transcriptome. Gestational nPM exposure caused increased depressive behaviors, decreased neurogenesis in the dentate gyrus, and increased glucose tolerance in adult male offspring. Both sexes gained fat and body weight. Gestational nPM exposure induced 29 differentially expressed genes (DEGs) in adult hippocampus related to cytokine production, IL17a signaling, and dopamine degradation in both sexes. Stratification by sex showed twofold more DEGs in males than females (69 vs 37), as well as male-specific enrichment of DEGs mediating serotonin signaling, endocytosis, Gαi, and cAMP signaling. Gene co-expression analysis (WCGNA) identified a module of 43 genes with divergent responses to nPM between the sexes. Chronic changes in 14 DEGs (e.g., microRNA9-1) were associated with depressive behaviors, adiposity and glucose intolerance. These genes enriched neuroimmune pathways such as HMGB1 and TLR4. Based on cerebral cortex transcriptome data of neonates, we traced the initial nPM responses of HMGB1 pathway. In vitro, mixed glia responded to 24 h nPM with lower HMGB1 protein and increased proinflammatory cytokines. This response was ameliorated by TLR4 knockdown. In sum, we identified transcriptional changes that could be associated with air pollution-mediated behavioral and phenotypic changes. These identified genes merit further mechanistic studies for therapeutic intervention development.


Asunto(s)
Contaminación del Aire , Trastorno del Espectro Autista , Contaminación del Aire/efectos adversos , Animales , Femenino , Hipocampo , Masculino , Ratones , Ratones Endogámicos C57BL , Transcriptoma
20.
Mol Autism ; 10: 36, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31673306

RESUMEN

Background: Autism spectrum disorder (ASD) is a neurodevelopmental disorder that affects more than 1% of children in the USA. ASD risk is thought to arise from both genetic and environmental factors, with the perinatal period as a critical window. Understanding early transcriptional changes in ASD would assist in clarifying disease pathogenesis and identifying biomarkers. However, little is known about umbilical cord blood gene expression profiles in babies later diagnosed with ASD compared to non-typically developing and non-ASD (Non-TD) or typically developing (TD) children. Methods: Genome-wide transcript levels were measured by Affymetrix Human Gene 2.0 array in RNA from cord blood samples from both the Markers of Autism Risk in Babies-Learning Early Signs (MARBLES) and the Early Autism Risk Longitudinal Investigation (EARLI) high-risk pregnancy cohorts that enroll younger siblings of a child previously diagnosed with ASD. Younger siblings were diagnosed based on assessments at 36 months, and 59 ASD, 92 Non-TD, and 120 TD subjects were included. Using both differential expression analysis and weighted gene correlation network analysis, gene expression between ASD and TD, and between Non-TD and TD, was compared within each study and via meta-analysis. Results: While cord blood gene expression differences comparing either ASD or Non-TD to TD did not reach genome-wide significance, 172 genes were nominally differentially expressed between ASD and TD cord blood (log2(fold change) > 0.1, p < 0.01). These genes were significantly enriched for functions in xenobiotic metabolism, chromatin regulation, and systemic lupus erythematosus (FDR q < 0.05). In contrast, 66 genes were nominally differentially expressed between Non-TD and TD, including 8 genes that were also differentially expressed in ASD. Gene coexpression modules were significantly correlated with demographic factors and cell type proportions. Limitations: ASD-associated gene expression differences identified in this study are subtle, as cord blood is not the main affected tissue, it is composed of many cell types, and ASD is a heterogeneous disorder. Conclusions: This is the first study to identify gene expression differences in cord blood specific to ASD through a meta-analysis across two prospective pregnancy cohorts. The enriched gene pathways support involvement of environmental, immune, and epigenetic mechanisms in ASD etiology.


Asunto(s)
Trastorno Autístico/genética , Autoinmunidad/genética , Cromatina/metabolismo , Ambiente , Sangre Fetal/metabolismo , Adulto , Niño , Femenino , Regulación de la Expresión Génica , Redes Reguladoras de Genes , Humanos , Masculino , Estudios Prospectivos , Factores de Riesgo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...