Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Intervalo de año de publicación
1.
Mol Cell Biochem ; 2023 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-37354361

RESUMEN

Pregnancy and lactation are important stages of fetal development. Therefore, this study investigated how different maternal diets offered during gestation and lactation periods affect adipose tissue inflammation and liver tissue oxidative stress of dams and their female offspring. Female BALB/c albino mice (60 days old) were randomized into three groups receiving a standard (CONT), hypercaloric (HD), or restricted (RD) diet during the pregnancy. After birth, female offspring weaned at 21 days were divided into two groups that received a standard or restricted diet (CONT/CONT, CONT/RD, RD/CONT, RD/RD, HD/CONT, and HD/RD) until 100 days old. Histological, oxidative parameters and inflammatory infiltrate of dams' and offspring's liver and adipose tissue were evaluated. HD dams presented non-alcoholic steatohepatitis (NASH) diagnosis and an increase in tumor necrosis factor-alpha (TNF-α) concentrations when compared to the RD and CONT dams, indicating a pro-inflammatory state. High concentrations of malondialdehyde (MDA) formation and catalase (CAT) activity in HD when compared to the CONT in the liver. SOD activity decreased in RD mice compared to CONT, and the SOD/CAT ratio was decreased in the RD and HD in comparison to the CONT. The maternal diet leads to an increase in SOD in RD/RD compared to HD/RD. RD-fed dams showed an increase in inflammatory infiltrates compared to CONT, evidencing changes caused by a restrictive diet. In the HD/CONT offspring, we verified an increase in inflammatory infiltrates in relation to the offspring fed a standard diet. In conclusion, HD, and RD, during pregnancy and lactation, altered the liver and adipose tissues of mothers. Furthermore, the maternal diet negatively impacts the offspring's adipose tissue but does not cause liver damage in these animals in adult life.

2.
Behav Brain Res ; 425: 113838, 2022 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-35283195

RESUMEN

Restrictive diets (RD) can influence the inflammatory phenotype of dams and their offspring. Thus, this study aimed to evaluate the effects of caloric restriction on the neuroinflammatory profile in the hippocampus and the short-term recognition memory of male offspring from RD-fed dams. Mice dams received standard diet ad libitum (CONT) or restrictive diet (RD; 30% reduction of CONT consumption) during pregnancy and lactation. Male pups were weaned at 21 days and randomly divided into two groups that received CONT or RD; groups were named according to maternal/offspring diets: CONT/CONT, CONT/RD, RD/CONT, and RD/RD. At 90 days old, short-term memory was assessed by the object recognition test (ORT); the inflammatory state of the hippocampus was analyzed by gene expression of sirtuin-1 (Sirt1) and inflammasome Nlrp3; and by protein expression of toll-like receptor-4 (TLR-4) and zonula occludens-1 (ZO-1). Our results showed an improvement in short-term memory in RD-fed offspring. The expression of Sirt1 was higher in RD/CONT compared to CONT/CONT and decreased in RD/RD compared to CONT/RD. Nlrp3 gene expression showed an offspring effect, being decreased in RD-fed mice. TLR-4 expression was higher in RD/CONT compared to CONT/CONT, similarly to ZO-1 expression. However, ZO-1 also showed a maternal diet effect and increased expression in the offspring of RD dams. Our findings demonstrate that caloric restriction improved short-term recognition memory. However, a restrictive diet should be applied with caution; depending on the offspring's diet, it may not benefit the neuroinflammatory phenotype or cognition.


Asunto(s)
Restricción Calórica , Efectos Tardíos de la Exposición Prenatal , Animales , Femenino , Masculino , Ratones , Embarazo , Hipocampo/metabolismo , Lactancia/fisiología , Fenómenos Fisiologicos Nutricionales Maternos/fisiología , Memoria a Corto Plazo , Proteína con Dominio Pirina 3 de la Familia NLR , Efectos Tardíos de la Exposición Prenatal/metabolismo , Sirtuina 1/metabolismo , Receptor Toll-Like 4/metabolismo
3.
J. physiol. biochem ; 78(1): 271-282, feb. 2022.
Artículo en Inglés | IBECS | ID: ibc-215888

RESUMEN

Maternal diet is key to the progeny’s health since it may impact on the offspring’s adult life. In this study, mice dams received standard (CONT), restrictive (RD), or hypercaloric (HD) diets during mating, pregnancy, and lactation. Male offspring of each group of dams also received these diets: CONT, RD, HD. Aiming to evaluate the oxidative stress in the adipose tissue, reactive oxygen species (ROS) production, catalase (CAT), and superoxide dismutase (SOD) activities were analyzed in dams and offspring. In the adipose tissue and hypothalamus, gene expression of prolactin (Prlr) and estrogen alpha (Esr1) receptors was performed in dams and offspring. Protein expression of Stat5 was evaluated in the adipose tissue of the offspring from RD-fed dams. HD-fed dams increased triglycerides and leptin serum concentrations, and decreased SOD activity in the adipose tissue. In the offspring’s adipose tissue, we observed a maternal diet effect caused by HD, with increased ROS production and SOD and CAT activities. Gene expression of Prlr and Esr1 in the offspring’s adipose tissue was decreased due to maternal RD. Mice from HD-fed dams showed higher Stat5 expression compared to the offspring from CONT and RD dams in the adipose tissue. In the hypothalamus, we found decreased expression of Prlr in RD and HD dams, compared to CONT; and a maternal diet effect on Prlr and Esr1 gene expression in the offspring. In conclusion, we can affirm that maternal nutrition impacts the redox state and influences the gene expression of Prlr and Esr1, which are involved in energy metabolism, both peripherally and centrally in the adult life of the female offspring. (AU)


Asunto(s)
Humanos , Animales , Ratones , Prolactina/metabolismo , Efectos Tardíos de la Exposición Prenatal/metabolismo , Tejido Adiposo/metabolismo , Receptor alfa de Estrógeno , Estrés Oxidativo , Expresión Génica , Hipotálamo
4.
J Physiol Biochem ; 78(1): 271-282, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35023022

RESUMEN

Maternal diet is key to the progeny's health since it may impact on the offspring's adult life. In this study, mice dams received standard (CONT), restrictive (RD), or hypercaloric (HD) diets during mating, pregnancy, and lactation. Male offspring of each group of dams also received these diets: CONT, RD, HD. Aiming to evaluate the oxidative stress in the adipose tissue, reactive oxygen species (ROS) production, catalase (CAT), and superoxide dismutase (SOD) activities were analyzed in dams and offspring. In the adipose tissue and hypothalamus, gene expression of prolactin (Prlr) and estrogen alpha (Esr1) receptors was performed in dams and offspring. Protein expression of Stat5 was evaluated in the adipose tissue of the offspring from RD-fed dams. HD-fed dams increased triglycerides and leptin serum concentrations, and decreased SOD activity in the adipose tissue. In the offspring's adipose tissue, we observed a maternal diet effect caused by HD, with increased ROS production and SOD and CAT activities. Gene expression of Prlr and Esr1 in the offspring's adipose tissue was decreased due to maternal RD. Mice from HD-fed dams showed higher Stat5 expression compared to the offspring from CONT and RD dams in the adipose tissue. In the hypothalamus, we found decreased expression of Prlr in RD and HD dams, compared to CONT; and a maternal diet effect on Prlr and Esr1 gene expression in the offspring. In conclusion, we can affirm that maternal nutrition impacts the redox state and influences the gene expression of Prlr and Esr1, which are involved in energy metabolism, both peripherally and centrally in the adult life of the female offspring.


Asunto(s)
Efectos Tardíos de la Exposición Prenatal , Prolactina , Tejido Adiposo/metabolismo , Animales , Receptor alfa de Estrógeno , Femenino , Expresión Génica , Humanos , Hipotálamo/metabolismo , Lactancia , Masculino , Fenómenos Fisiologicos Nutricionales Maternos , Ratones , Estrés Oxidativo , Embarazo , Efectos Tardíos de la Exposición Prenatal/metabolismo , Prolactina/metabolismo
5.
Brain Res Bull ; 162: 245-252, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32619693

RESUMEN

The neurocircuitry underlying hunger, satiety, motivation to eat and food reward is complex, however a lot of mechanisms are still unknown. Two main cerebral areas are responsible for controlling feeding through hunger and food reward: the hypothalamus (HPT) and the ventral tegmental area (VTA), respectively. The dopaminergic system modulates both these areas and is essential to control food ingestion. Therefore, we aim to evaluate the effects of restrictive and hyperlipidic diets during pregnancy, lactation and during adult life of the offspring, on the expression of dopaminergic system genes in VTA and HPT of mice dams and their adult male offspring. We also measured diets' effect in locomotor activity in the open field (OF) test. Female mice were divided into control (CONT), restriction (RD) and hyperlipidic (HD) dietary groups, and mated with isogenic male mice. On the 9th postpartum day (PPD), dams were tested in the OF, and on the 22nd PPD cerebral areas were collected. After weaning, the offspring also were divided into one of three diet groups, independently of the diets provided to their dams. In the 80th PPD, the offspring was tested in the OF, and at 100th PPD, VTA and HPT were collected. Gene expression was analyzed by quantitative reverse transcription real-time polymerase chain reaction. The correlation between gene expression and locomotor activity was also assessed. In dams' VTA, both diets upregulated the expression of Th, Slc6a3/Dat1, Drd1 and Drd2 genes. In opposition, in the offspring the maternal diet was associated with a reduction in Th and Ddc gene expression. In the HPT, mice dams that received restriction or hyperlipidic diets had increased Th mRNA levels, but reduced the expression of Drd4 gene. The offspring diet had no effect on the expression of the studied genes in their adult lives. Both diets increased mice dam's locomotion in the OF, however none of them altered the offspring locomotor activity. We detected a positive correlation between the duration of total locomotion in the OF and Slc6a3/Dat1 gene expression in VTA of mice dams. In the HPT, a negative correlation of locomotion and Drd4 mRNA levels, and a positive correlation with Th gene expression was observed. Our results show that restriction and hyperlipidic diets alter mice dams' locomotor activity in the OF and modify the expression of dopaminergic system genes in VTA and HPT of mice dams and in VTA of the offspring.


Asunto(s)
Restricción Calórica , Dieta Alta en Grasa , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/biosíntesis , Lactancia/metabolismo , Efectos Tardíos de la Exposición Prenatal/metabolismo , Receptores Dopaminérgicos/biosíntesis , Factores de Edad , Animales , Animales Recién Nacidos , Restricción Calórica/efectos adversos , Dieta Alta en Grasa/efectos adversos , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/genética , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/metabolismo , Femenino , Expresión Génica , Hipotálamo/metabolismo , Lactancia/genética , Masculino , Ratones , Ratones Endogámicos BALB C , Embarazo , Efectos Tardíos de la Exposición Prenatal/genética , Receptores Dopaminérgicos/genética , Tirosina 3-Monooxigenasa/biosíntesis , Tirosina 3-Monooxigenasa/genética , Área Tegmental Ventral/metabolismo
6.
Physiol Behav ; 204: 162-167, 2019 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-30802509

RESUMEN

Genetic and environmental factors related to maternal diet may predispose offspring to serious diseases. However, consequences of a maternal diet intervention during gestation and lactation, and its association with caloric restriction after weaning on the progeny are not completely known. In this context, the goal of the present study was to investigate how different maternal diets, control (CONT), hypercaloric (HD) or restrictive (RD) diets during gestation and lactation, may affect the metabolism and behavior of the offspring that was also submitted to RD. Experimental groups were abbreviated accordingly maternal/offspring diets: CONT/CONT, CONT/RD, RD/CONT, RD/RD, HD/CONT, HD/RD. Our results showed that glucose serum concentration is increased in mice from dams fed a HD. However, offspring from RD-fed dams showed lower insulin and leptin levels than the other groups, indicating a maternal diet effect. Moreover, animals from RD/CONT group showed a higher adipocyte area in comparison to both HD/CONT and CON/CONT. Offspring from RD-fed dams exhibited a decrease in lateral area locomotion in the open field test. Evaluation of anxiety-like behavior and recognition memory showed no significant difference among groups. Thus, maternal RD provides a beneficial response in metabolic parameters, but its effects on behavior is not completely clarified.


Asunto(s)
Conducta Animal/fisiología , Dieta Alta en Grasa , Lactancia/fisiología , Fenómenos Fisiologicos Nutricionales Maternos/fisiología , Actividad Motora/fisiología , Efectos Tardíos de la Exposición Prenatal/metabolismo , Adipocitos/metabolismo , Animales , Peso Corporal/fisiología , Restricción Calórica , Femenino , Insulina/sangre , Leptina/sangre , Ratones , Embarazo , Efectos Tardíos de la Exposición Prenatal/sangre , Destete
7.
Genet Mol Biol ; 41(3): 562-569, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30044466

RESUMEN

The reward sensation after food intake may be different between individuals and variants in genes related to the dopaminergic system may indicate a different response in people exposed to the same environmental factors. This study investigated the association of TaqIA (rs1800497) and -141C InsDel (rs1799732) variants in DRD2/ANKK1 gene with food intake and adiposity parameters in a cohort of children. The sample consisted of 270 children followed until 7 to 8 years old. DNA was extracted from blood and polymorphisms were detected by PCR-RFLP analysis. Food intake and nutritional status were compared among individuals with different SNP genotypes. Children carrying the A1 allele (TaqIA) had higher energy of lipid dense foods (LDF) when compared with A2/A2 homozygous children at 7 to 8 years old (GLM p=0.004; Mann Whitney p=0.005). No association was detected with -141C Ins/Del polymorphism. To our knowledge, this is the first association study of the DRD2 TaqIA and -141C Ins/Del polymorphism with food intake and anthropometric parameters in children. DRD2 TaqIA polymorphism has been associated with a reduction in D2 dopamine receptor availability. Therefore, the differences observed in LDF intake in our sample may occur as an effort to compensate the hypodopaminergic functioning.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...