Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
1.
bioRxiv ; 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38659944

RESUMEN

Despite early optimism, therapeutics targeting oxidative phosphorylation (OxPhos) have faced clinical setbacks, stemming from their inability to distinguish healthy from cancerous mitochondria. Herein, we describe an actionable bioenergetic mechanism unique to cancerous mitochondria inside acute myeloid leukemia (AML) cells. Unlike healthy cells which couple respiration to the synthesis of ATP, AML mitochondria were discovered to support inner membrane polarization by consuming ATP. Because matrix ATP consumption allows cells to survive bioenergetic stress, we hypothesized that AML cells may resist cell death induced by OxPhos damaging chemotherapy by reversing the ATP synthase reaction. In support of this, targeted inhibition of BCL-2 with venetoclax abolished OxPhos flux without impacting mitochondrial membrane potential. In surviving AML cells, sustained polarization of the mitochondrial inner membrane was dependent on matrix ATP consumption. Mitochondrial ATP consumption was further enhanced in AML cells made refractory to venetoclax, consequential to downregulations in both the proton-pumping respiratory complexes, as well as the endogenous F1-ATPase inhibitor ATP5IF1. In treatment-naive AML, ATP5IF1 knockdown was sufficient to drive venetoclax resistance, while ATP5IF1 overexpression impaired F1-ATPase activity and heightened sensitivity to venetoclax. Collectively, our data identify matrix ATP consumption as a cancer-cell intrinsic bioenergetic vulnerability actionable in the context of mitochondrial damaging chemotherapy.

2.
J Lipid Res ; 65(3): 100520, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38369184

RESUMEN

Lipid amidases of therapeutic relevance include acid ceramidase (AC), N-acylethanolamine-hydrolyzing acid amidase, and fatty acid amide hydrolase (FAAH). Although fluorogenic substrates have been developed for the three enzymes and high-throughput methods for screening have been reported, a platform for the specific detection of these enzyme activities in intact cells is lacking. In this article, we report on the coumarinic 1-deoxydihydroceramide RBM1-151, a 1-deoxy derivative and vinilog of RBM14-C12, as a novel substrate of amidases. This compound is hydrolyzed by AC (appKm = 7.0 µM; appVmax = 99.3 nM/min), N-acylethanolamine-hydrolyzing acid amidase (appKm = 0.73 µM; appVmax = 0.24 nM/min), and FAAH (appKm = 3.6 µM; appVmax = 7.6 nM/min) but not by other ceramidases. We provide proof of concept that the use of RBM1-151 in combination with reported irreversible inhibitors of AC and FAAH allows the determination in parallel of the three amidase activities in single experiments in intact cells.


Asunto(s)
Amidohidrolasas , Colorantes Fluorescentes , Etanolaminas/química , Lípidos
4.
Clin Cancer Res ; 2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38252421

RESUMEN

PURPOSE: Develop a novel therapeutic strategy for patients with subtypes of mature T-cell and NK-cell neoplasms. EXPERIMENTAL DESIGN: Primary specimens, cell lines, patient-derived xenograft models, commercially available and proprietary anti-KLRG1 antibodies were used for screening, target, and functional validation. RESULTS: Here we demonstrate that surface KLRG1 is highly expressed on tumor cells in subsets of patients with extranodal NK/T-cell lymphoma (ENKTCL), T-prolymphocytic leukemia (T-PLL) and gamma/delta T-cell lymphoma (G/D TCL). The majority of the CD8+/CD57+ or CD3-/CD56+ leukemic cells derived from patients with T- and NK-large granular lymphocytic leukemia (T-LGLL and NK-LGLL) respectively expressed surface KLRG1. The humanized afucosylated anti-KLRG1 monoclonal antibody (mAb208) optimized for mouse in vivo use depleted KLRG1+ TCL cells by mechanisms of ADCC, ADCP and CDC rather than apoptosis. mAb208 induced ADCC and ADCP of T-LGLL patient-derived CD8+/CD57+ cells ex vivo. mAb208 effected ADCC of subsets of healthy donor-derived KLRG1+ NK, CD4+, CD8+ Tem and TemRA cells while sparing KLRG1- naive and CD8+ Tcm cells. Treatment of cell line and TCL patient-derived xenografts with mAb208 or anti-CD47 mAb alone and in combination with the PI3K-δ/γ inhibitor, duvelisib extended survival. The depletion of macrophages in vivo antagonized mAb208 efficacy. CONCLUSIONS: Our findings suggest the potential benefit of a broader treatment strategy combining therapeutic antibodies with PI3Ki for the treatment of patients with mature T-cell and NK-cell neoplasms.

5.
Cancers (Basel) ; 15(24)2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-38136410

RESUMEN

Acute myeloid leukemia (AML) is an aggressive hematologic malignancy requiring urgent treatment advancements. Ceramide is a cell-death-promoting signaling lipid that plays a central role in therapy-induced cell death. We previously determined that acid ceramidase (AC), a ceramide-depleting enzyme, is overexpressed in AML and promotes leukemic survival and drug resistance. The ceramidase inhibitor B-13 and next-generation lysosomal-localizing derivatives termed dimethylglycine (DMG)-B-13 prodrugs have been developed but remain untested in AML. Here, we report the in vitro anti-leukemic efficacy and mechanism of DMG-B-13 prodrug LCL-805 across AML cell lines and primary patient samples. LCL-805 inhibited AC enzymatic activity, increased total ceramides, and reduced sphingosine levels. A median EC50 value of 11.7 µM was achieved for LCL-805 in cell viability assays across 32 human AML cell lines. As a single agent tested across a panel of 71 primary AML patient samples, a median EC50 value of 15.8 µM was achieved. Exogenous ceramide supplementation with C6-ceramide nanoliposomes, which is entering phase I/II clinical trial for relapsed/refractory AML, significantly enhanced LCL-805 killing. Mechanistically, LCL-805 antagonized Akt signaling and led to iron-dependent cell death distinct from canonical ferroptosis. These findings elucidated key factors involved in LCL-805 cytotoxicity and demonstrated the potency of combining AC inhibition with exogenous ceramide.

6.
bioRxiv ; 2023 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-37961314

RESUMEN

Acute myeloid leukemia (AML) is an aggressive hematologic malignancy requiring urgent treatment advancements. Ceramide is a cell death-promoting signaling lipid that plays a central role in therapy-induced cell death. Acid ceramidase (AC), a ceramide-depleting enzyme, is overexpressed in AML and promotes leukemic survival and drug resistance. The ceramidase inhibitor B-13 and next-generation lysosomal-localizing derivatives termed dimethylglycine (DMG)-B-13 prodrugs have been developed but remain untested in AML. Here, we report the in vitro anti-leukemic efficacy and mechanism of DMG-B-13 prodrug, LCL-805, across AML cell lines and primary patient samples. LCL-805 inhibited AC enzymatic activity, increased total ceramides, and reduced sphingosine levels. A median EC50 value of 11.7 µM was achieved for LCL-805 in cell viability assays across 32 human AML cell lines. As a single agent tested across a panel of 71 primary AML patient samples, a median EC50 value of 15.8 µM was achieved. Exogenous ceramide supplementation with C6-ceramide nanoliposomes, which is entering phase I/II clinical trial for relapsed/refractory AML, significantly enhanced LCL-805 killing. Mechanistically, LCL-805 antagonized Akt signaling and led to iron-dependent cell death distinct from canonical ferroptosis. These findings elucidated key factors involved in LCL-805 cytotoxicity and demonstrated the potency of combining AC inhibition with exogenous ceramide.

7.
bioRxiv ; 2023 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-37131653

RESUMEN

Acute myeloid leukemia (AML) is an aggressive disease with complex and heterogeneous biology. Although several genomic classifications have been proposed, there is a growing interest in going beyond genomics to stratify AML. In this study, we profile the sphingolipid family of bioactive molecules in 213 primary AML samples and 30 common human AML cell lines. Using an integrative approach, we identify two distinct sphingolipid subtypes in AML characterized by a reciprocal abundance of hexosylceramide (Hex) and sphingomyelin (SM) species. The two Hex-SM clusters organize diverse samples more robustly than known AML driver mutations and are coupled to latent transcriptional states. Using transcriptomic data, we develop a machine-learning classifier to infer the Hex-SM status of AML cases in TCGA and BeatAML clinical repositories. The analyses show that the sphingolipid subtype with deficient Hex and abundant SM is enriched for leukemic stemness transcriptional programs and comprises an unappreciated high-risk subgroup with poor clinical outcomes. Our sphingolipid-focused examination of AML identifies patients least likely to benefit from standard of care and raises the possibility that sphingolipidomic interventions could switch the subtype of AML patients who otherwise lack targetable alternatives.

8.
Cancers (Basel) ; 15(6)2023 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-36980769

RESUMEN

Acute myelogenous leukemia (AML), the most prevalent acute and aggressive leukemia diagnosed in adults, often recurs as a difficult-to-treat, chemotherapy-resistant disease. Because chemotherapy resistance is a major obstacle to successful treatment, novel therapeutic intervention is needed. Upregulated ceramide clearance via accelerated hydrolysis and glycosylation has been shown to be an element in chemotherapy-resistant AML, a problem considering the crucial role ceramide plays in eliciting apoptosis. Herein we employed agents that block ceramide clearance to determine if such a "reset" would be of therapeutic benefit. SACLAC was utilized to limit ceramide hydrolysis, and D-threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol (D-threo-PDMP) was used to block the glycosylation route. The SACLAC D-threo-PDMP inhibitor combination was synergistically cytotoxic in drug-resistant, P-glycoprotein-expressing (P-gp) AML but not in wt, P-gp-poor cells. Interestingly, P-gp antagonists that can limit ceramide glycosylation via depression of glucosylceramide transit also synergized with SACLAC, suggesting a paradoxical role for P-gp in the implementation of cell death. Mechanistically, cell death was accompanied by a complete drop in ceramide glycosylation, concomitant, striking increases in all molecular species of ceramide, diminished sphingosine 1-phosphate levels, resounding declines in mitochondrial respiratory kinetics, altered Akt, pGSK-3ß, and Mcl-1 expression, and caspase activation. Although ceramide was generated in wt cells upon inhibitor exposure, mitochondrial respiration was not corrupted, suggestive of mitochondrial vulnerability in the drug-resistant phenotype, a potential therapeutic avenue. The inhibitor regimen showed efficacy in an in vivo model and in primary AML cells from patients. These results support the implementation of SL enzyme targeting to limit ceramide clearance as a therapeutic strategy in chemotherapy-resistant AML, inclusive of a novel indication for the use of P-gp antagonists.

9.
FASEB J ; 36(10): e22514, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36106439

RESUMEN

Despite several new therapeutic options for acute myeloid leukemia (AML), disease relapse remains a significant challenge. We have previously demonstrated that augmenting ceramides can counter various drug-resistance mechanisms, leading to enhanced cell death in cancer cells and extended survival in animal models. Using a nanoscale delivery system for ceramide (ceramide nanoliposomes, CNL), we investigated the effect of CNL within a standard of care venetoclax/cytarabine (Ara-C) regimen. We demonstrate that CNL augmented the efficacy of venetoclax/cytarabine in in vitro, ex vivo, and in vivo models of AML. CNL treatment induced non-apoptotic cytotoxicity, and augmented cell death induced by Ara-C and venetoclax. Mechanistically, CNL reduced both venetoclax (Mcl-1) and cytarabine (Chk1) drug-resistant signaling pathways. Moreover, venetoclax and Ara-C augmented the generation of endogenous pro-death ceramide species, which was intensified with CNL. Taken together, CNL has the potential to be utilized as an adjuvant therapy to improve outcomes, potentially extending survival, in patients with AML.


Asunto(s)
Antineoplásicos , Leucemia Mieloide Aguda , Animales , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Compuestos Bicíclicos Heterocíclicos con Puentes/farmacología , Ceramidas , Citarabina/farmacología , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/metabolismo , Sulfonamidas
10.
EJHaem ; 3(3): 919-923, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35941882

RESUMEN

Large granular lymphocyte leukemia is a rare chronic lymphoproliferative disorder of cytotoxic cells. Other hematological malignancies such as CLL and multiple myeloma have been associated with poor vaccination response and markedly increased severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) mortality rates, specifically in patients who have undergone immunosuppressive therapy. Given the immunosuppressive therapies often used to treat the disease, large granular lymphocytic (LGL) patients may be especially vulnerable to SARS-CoV-2 infection. A questionnaire was sent to all patients in the LGL Leukemia Registry at the University of Virginia (UVA) to obtain information on vaccination status, type of vaccine received, side effects of vaccination, patient treatment status before, during, and after vaccination, antibody testing, history of coronavirus disease 2019 (COVID-19) infection, and presence or absence of booster vaccination. Antibody testing of 27 patients who had quantitative SARS-CoV-2 Spike Protein IgG levels determined by University of Virginia medical laboratories via the Abbott Architect SARS-CoV-2 IgG II assay were collected. The assay was scored as reactive at a threshold of ≥50.0 AU/mL or nonreactive with a threshold of <50.0 AU/mL. LGL patients without treatment as well as patients who held treatment prior to their vaccination have a robust humoral response to SARS-CoV-2 vaccines. Patients who did not hold their immunosuppressive treatments have signifigantly diminished vaccine response compared to those who held their immunosuppressive treatment. Our findings support a dual strategy of pausing immunotherapy during the vaccination window and administration of the SARS-CoV-2 booster to all LGL leukemia patients to maximize protective antibodies.

11.
Front Oncol ; 12: 869205, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35646651

RESUMEN

Large granular lymphocyte (LGL) leukemia, a rare hematologic malignancy, has long been associated with rheumatoid arthritis (RA), and the diseases share numerous common features. This review aims to outline the parallels and comparisons between the diseases as well as discuss the potential mechanisms for the relationship between LGL leukemia and RA. RA alone and in conjunction with LGL leukemia exhibits cytotoxic T-cell (CTL) expansions, HLA-DR4 enrichment, RA-associated autoantibodies, female bias, and unknown antigen specificity of associated T-cell expansions. Three possible mechanistic links between the pathogenesis of LGL leukemia and RA have been proposed, including LGL leukemia a) as a result of longstanding RA, b) as a consequence of RA treatment, or c) as a driver of RA. Several lines of evidence point towards LGL as a driver of RA. CTL involvement in RA pathogenesis is evidenced by citrullination and granzyme B cleavage that modifies the repertoire of self-protein antigens in target cells, particularly neutrophils, killed by the CTLs. Further investigations of the relationship between LGL leukemia and RA are warranted to better understand causal pathways and target antigens in order to improve the mechanistic understanding and to devise targeted therapeutic approaches for both disorders.

12.
Nat Genet ; 54(5): 637-648, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35513723

RESUMEN

Chronic lymphoproliferative disorder of natural killer cells (CLPD-NK) is characterized by clonal expansion of natural killer (NK) cells where the underlying genetic mechanisms are incompletely understood. In the present study, we report somatic mutations in the chemokine gene CCL22 as the hallmark of a distinct subset of CLPD-NK. CCL22 mutations were enriched at highly conserved residues, mutually exclusive of STAT3 mutations and associated with gene expression programs that resembled normal CD16dim/CD56bright NK cells. Mechanistically, the mutations resulted in ligand-biased chemokine receptor signaling, with decreased internalization of the G-protein-coupled receptor (GPCR) for CCL22, CCR4, via impaired ß-arrestin recruitment. This resulted in increased cell chemotaxis in vitro, bidirectional crosstalk with the hematopoietic microenvironment and enhanced NK cell proliferation in vivo in transgenic human IL-15 mice. Somatic CCL22 mutations illustrate a unique mechanism of tumor formation in which gain-of-function chemokine mutations promote tumorigenesis by biased GPCR signaling and dysregulation of microenvironmental crosstalk.


Asunto(s)
Quimiocina CCL22 , Células Asesinas Naturales , Trastornos Linfoproliferativos , Animales , Quimiocina CCL22/genética , Células Asesinas Naturales/patología , Activación de Linfocitos , Trastornos Linfoproliferativos/genética , Trastornos Linfoproliferativos/metabolismo , Trastornos Linfoproliferativos/patología , Ratones , Mutación
13.
Blood Rev ; 55: 100950, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35487785

RESUMEN

Acute myeloid leukemia (AML) is an aggressive, heterogenous malignancy characterized by clonal expansion of bone marrow-derived myeloid progenitor cells. While our current understanding of the molecular and genomic landscape of AML has evolved dramatically and opened avenues for molecularly targeted therapeutics to improve upon standard intensive induction chemotherapy, curative treatments are elusive, particularly in older patients. Responses to current AML treatments are transient and incomplete, necessitating the development of novel treatment strategies to improve outcomes. To this end, harnessing the power of bioactive sphingolipids to treat cancer shows great promise. Sphingolipids are involved in many hallmarks of cancer of paramount importance in AML. Leukemic blast survival is influenced by cellular levels of ceramide, a bona fide pro-death molecule, and its conversion to signaling molecules such as sphingosine-1-phosphate and glycosphingolipids. Preclinical studies demonstrate the efficacy of therapeutics that target dysregulated sphingolipid metabolism as well as their combinatorial synergy with clinically-relevant therapeutics. Thus, increased understanding of sphingolipid dysregulation may be exploited to improve AML patient care and outcomes. This review summarizes the current knowledge of dysregulated sphingolipid metabolism in AML, evaluates how pro-survival sphingolipids promote AML pathogenesis, and discusses the therapeutic potential of targeting these dysregulated sphingolipid pathways.


Asunto(s)
Leucemia Mieloide Aguda , Esfingolípidos , Anciano , Ceramidas/metabolismo , Ceramidas/uso terapéutico , Humanos , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/terapia , Transducción de Señal , Esfingolípidos/metabolismo , Esfingolípidos/uso terapéutico
14.
Blood ; 139(20): 3058-3072, 2022 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-35015834

RESUMEN

Large granular lymphocyte (LGL) leukemia comprises a group of rare lymphoproliferative disorders whose molecular landscape is incompletely defined. We leveraged paired whole-exome and transcriptome sequencing in the largest LGL leukemia cohort to date, which included 105 patients (93 T-cell receptor αß [TCRαß] T-LGL and 12 TCRγδ T-LGL). Seventy-six mutations were observed in 3 or more patients in the cohort, and out of those, STAT3, KMT2D, PIK3R1, TTN, EYS, and SULF1 mutations were shared between both subtypes. We identified ARHGAP25, ABCC9, PCDHA11, SULF1, SLC6A15, DDX59, DNMT3A, FAS, KDM6A, KMT2D, PIK3R1, STAT3, STAT5B, TET2, and TNFAIP3 as recurrently mutated putative drivers using an unbiased driver analysis approach leveraging our whole-exome cohort. Hotspot mutations in STAT3, PIK3R1, and FAS were detected, whereas truncating mutations in epigenetic modifying enzymes such as KMT2D and TET2 were observed. Moreover, STAT3 mutations co-occurred with mutations in chromatin and epigenetic modifying genes, especially KMT2D and SETD1B (P < .01 and P < .05, respectively). STAT3 was mutated in 50.5% of the patients. Most common Y640F STAT3 mutation was associated with lower absolute neutrophil count values, and N647I mutation was associated with lower hemoglobin values. Somatic activating mutations (Q160P, D170Y, L287F) in the STAT3 coiled-coil domain were characterized. STAT3-mutant patients exhibited increased mutational burden and enrichment of a mutational signature associated with increased spontaneous deamination of 5-methylcytosine. Finally, gene expression analysis revealed enrichment of interferon-γ signaling and decreased phosphatidylinositol 3-kinase-Akt signaling for STAT3-mutant patients. These findings highlight the clinical and molecular heterogeneity of this rare disorder.


Asunto(s)
Sistemas de Transporte de Aminoácidos Neutros , Leucemia Linfocítica Granular Grande , Sistemas de Transporte de Aminoácidos Neutros/genética , Exoma , Proteínas del Ojo/genética , Genómica , Humanos , Leucemia Linfocítica Granular Grande/genética , Mutación , Proteínas del Tejido Nervioso/genética , ARN Helicasas/genética , ARN Helicasas/metabolismo , Receptores de Antígenos de Linfocitos T alfa-beta/genética , Receptores de Antígenos de Linfocitos T gamma-delta/metabolismo , Factor de Transcripción STAT3/genética , Factor de Transcripción STAT3/metabolismo
15.
Leukemia ; 36(4): 983-993, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34873301

RESUMEN

T-LGL cells arise as a consequence of chronic antigenic stimulation and inflammation and thrive because of constitutive activation of the STAT3 and ERK pathway. Notably, in 40% of patients, constitutive STAT3 activation is due to STAT3 activating mutations, whereas in 60% this is unknown. As miRNAs are amongst the most potent regulators in health and disease, we hypothesized that aberrant miRNA expression could contribute to dysregulation of these pathways. miRNA sequencing in T-LGL leukemia cases and aged-matched healthy control TEMRA cells revealed overexpression of miR-181a. Furthermore, geneset enrichment analysis (GSEA) of downregulated targets of miR-181a implicated involvement in regulating STAT3 and ERK1/2 pathways. Flow cytometric analyses showed increased SOCS3+ and DUSP6+ T-LGL cells upon miR-181a inhibition. In addition, miR-181a-transfected human CD8+ T cells showed increased basal STAT3 and ERK1/2 phosphorylation. By using TL1, a human T-LGL cell line, we could show that miR-181a is an actor in T-LGL leukemia, driving STAT3 activation by SOCS3 inhibition and ERK1/2 phosphorylation by DUSP6 inhibition and verified this mechanism in an independent cell line. In addition, miR-181a inhibition resulted in a higher sensitivity to FAS-mediated apoptosis. Collectively, our data show that miR-181a could be the missing link to explain why STAT3-unmutated patients show hyperactive STAT3.


Asunto(s)
Leucemia Linfocítica Granular Grande , MicroARNs , Factor de Transcripción STAT3 , Linfocitos T CD8-positivos , Humanos , Leucemia Linfocítica Granular Grande/genética , MicroARNs/genética , Receptores de Antígenos de Linfocitos T alfa-beta , Factor de Transcripción STAT3/genética
16.
FASEB J ; 36(1): e22094, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34888943

RESUMEN

Modifications in sphingolipid (SL) metabolism and mitochondrial bioenergetics are key factors implicated in cancer cell response to chemotherapy, including chemotherapy resistance. In the present work, we utilized acute myeloid leukemia (AML) cell lines, selected to be refractory to various chemotherapeutics, to explore the interplay between SL metabolism and mitochondrial biology supportive of multidrug resistance (MDR). In agreement with previous findings in cytarabine or daunorubicin resistant AML cells, relative to chemosensitive wildtype controls, HL-60 cells refractory to vincristine (HL60/VCR) presented with alterations in SL enzyme expression and lipidome composition. Such changes were typified by upregulated expression of various ceramide detoxifying enzymes, as well as corresponding shifts in ceramide, glucosylceramide, and sphingomyelin (SM) molecular species. With respect to mitochondria, despite consistent increases in both basal respiration and maximal respiratory capacity, direct interrogation of the oxidative phosphorylation (OXPHOS) system revealed intrinsic deficiencies in HL60/VCR, as well as across multiple MDR model systems. Based on the apparent requirement for augmented SL and mitochondrial flux to support the MDR phenotype, we explored a combinatorial therapeutic paradigm designed to target each pathway. Remarkably, despite minimal cytotoxicity in peripheral blood mononuclear cells (PBMC), co-targeting SL metabolism, and respiratory complex I (CI) induced synergistic cytotoxicity consistently across multiple MDR leukemia models. Together, these data underscore the intimate connection between cellular sphingolipids and mitochondrial metabolism and suggest that pharmacological intervention across both pathways may represent a novel treatment strategy against MDR.


Asunto(s)
Resistencia a Múltiples Medicamentos , Resistencia a Antineoplásicos , Leucemia/metabolismo , Mitocondrias/metabolismo , Fosforilación Oxidativa , Esfingolípidos/metabolismo , Citarabina/farmacología , Daunorrubicina/farmacología , Células HL-60 , Humanos , Leucemia/patología , Mitocondrias/patología , Vincristina/farmacología
17.
Blood ; 138(8): 662-673, 2021 08 26.
Artículo en Inglés | MEDLINE | ID: mdl-33786584

RESUMEN

Chronic natural killer large granular lymphocyte (NK-LGL) leukemia, also referred to as chronic lymphoproliferative disorder of NK cells, is a rare disorder defined by prolonged expansion of clonal NK cells. Similar prevalence of STAT3 mutations in chronic T-LGL and NK-LGL leukemia is suggestive of common pathogenesis. We undertook whole-genome sequencing to identify mutations unique to NK-LGL leukemia. The results were analyzed to develop a resequencing panel that was applied to 58 patients. Phosphatidylinositol 3-kinase pathway gene mutations (PIK3CD/PIK3AP1) and TNFAIP3 mutations were seen in 5% and 10% of patients, respectively. TET2 was exceptional in that mutations were present in 16 (28%) of 58 patient samples, with evidence that TET2 mutations can be dominant and exclusive to the NK compartment. Reduced-representation bisulfite sequencing revealed that methylation patterns were significantly altered in TET2 mutant samples. The promoter of TET2 and that of PTPRD, a negative regulator of STAT3, were found to be methylated in additional cohort samples, largely confined to the TET2 mutant group. Mutations in STAT3 were observed in 19 (33%) of 58 patient samples, 7 of which had concurrent TET2 mutations. Thrombocytopenia and resistance to immunosuppressive agents were uniquely observed in those patients with only TET2 mutation (Games-Howell post hoc test, P = .0074; Fisher's exact test, P = .00466). Patients with STAT3 mutation, inclusive of those with TET2 comutation, had lower hematocrit, hemoglobin, and absolute neutrophil count compared with STAT3 wild-type patients (Welch's t test, P ≤ .015). We present the discovery of TET2 mutations in chronic NK-LGL leukemia and evidence that it identifies a unique molecular subtype.


Asunto(s)
Proteínas de Unión al ADN/genética , Dioxigenasas/genética , Leucemia Linfocítica Granular Grande/genética , Mutación , Proteínas de Neoplasias/genética , Sistema de Registros , Enfermedad Crónica , Proteínas de Unión al ADN/sangre , Dioxigenasas/sangre , Femenino , Humanos , Leucemia Linfocítica Granular Grande/sangre , Masculino , Proteínas de Neoplasias/sangre
18.
Cancer Med ; 9(18): 6533-6549, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32710512

RESUMEN

Large granular lymphocyte (LGL) leukemia is a rare hematological disorder with expansion of the T-cell or natural killer (NK) cell lineage. Signal transducer and activator of transcription 3 (STAT3) exhibits somatic activating mutations in 30%-40% of LGL leukemia cases. Transcriptional targets of STAT3 include inflammatory cytokines, thus previous studies have measured cytokine levels of LGL leukemia patients compared to normal donors. Sphingolipid metabolism is a growing area of cancer research, with efforts focused on drug discovery. To date, no studies have examined serum sphingolipids in LGL leukemia patients, and only one study compared a subset of cytokines between the T-LGL and NK-LGL subtypes. Therefore, here, we included both LGL leukemia subtypes with the goals of (a) measuring serum sphingolipids for the first time, (b) measuring cytokines to find distinctions between the subtypes, and (c) establishing relationships with STAT3 mutations and clinical data. The serum analyses identified cytokines (EGF, IP-10, G-CSF) and sphingolipids (SMC22, SMC24, SMC20, LysoSM) significantly different in the LGL leukemia group compared to normal donors. In a mixed STAT3 mutation group, D661Y samples exhibited the highest mean corpuscular volume (MCV) values. We explored this further by expanding the cohort to include larger groups of single STAT3 mutations. Male D661Y STAT3 samples had lower Hgb and higher MCV compared to wild type (WT) or Y640F counterparts. This is the first report examining large groups of individual STAT3 mutations. Overall, our results revealed novel serum biomarkers and evidence that D661Y mutation may show different clinical manifestation compared to WT or Y640F STAT3.


Asunto(s)
Citocinas/sangre , Leucemia Linfocítica Granular Grande/sangre , Leucemia Linfocítica Granular Grande/genética , Mutación , Factor de Transcripción STAT3/genética , Esfingolípidos/sangre , Adulto , Anciano , Anciano de 80 o más Años , Biomarcadores/sangre , Estudios de Casos y Controles , Femenino , Humanos , Leucemia Linfocítica Granular Grande/diagnóstico , Masculino , Persona de Mediana Edad , Sistema de Registros , Adulto Joven
19.
Front Oncol ; 10: 393, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32296637

RESUMEN

Acute myeloid leukemia is a heterogeneous disease with a 5-year survival rate of 28.3%, and current treatment options constrained by dose-limiting toxicities. One of the key signaling pathways known to be frequently activated and dysregulated in AML is PI3K/AKT. Its dysregulation is associated with aggressive cell growth and drug resistance. We investigated the activity of Phenybutyl isoselenocyanate (ISC-4) in primary cells obtained from newly diagnosed AML patients, diverse AML cell lines, and normal cord blood cells. ISC-4 significantly inhibited survival and clonogenicity of primary human AML cells without affecting normal cells. We demonstrated that ISC-4-mediated p-Akt inhibition caused apoptosis in primary AML (CD34+) stem cells and enhanced efficacy of cytarabine. ISC-4 impeded leukemia progression with improved overall survival in a syngeneic C1498 mouse model with no obvious toxic effects on normal myelopoiesis. In U937 xenograft model, bone marrow cells exhibited significant reduction in human CD45+ cells in ISC-4 (~87%) or AraC (~89%) monotherapy groups compared to control. Notably, combination treatment suppressed the leukemic infiltration significantly higher than the single-drug treatments (~94%). Together, the present findings suggest that ISC-4 might be a promising agent for AML treatment.

20.
Br J Haematol ; 190(3): 405-417, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32124438

RESUMEN

Sphingolipid metabolism is increasingly recognised as a therapeutic target in cancer due to its regulation of cell proliferation and apoptosis. The sphingolipid rheostat is proposed to control cell fate through maintaining balance between pro-apoptotic and pro-survival sphingolipids. This balance is regulated by metabolising enzymes involved in sphingolipid production. One such enzyme, sphingosine kinase-2 (SPHK2), produces pro-survival sphingosine 1-phosphate (S1P) by phosphorylation of pro-apoptotic sphingosine. Elevated SPHK2 has been found in multiple cancer types and contributes to cell survival, chemotherapeutic resistance and apoptosis resistance. We have previously shown elevation of S1P in large granular lymphocyte (LGL) leukaemia serum and cells isolated from patients. Here, we examined SPHK2 expression in LGL leukaemia and found SPHK2 mRNA and protein upregulation in a majority of LGL leukaemia patient samples. Knockdown of SPHK2 with siRNA in LGL leukaemia cell lines decreased proliferation. Additionally, the use of ABC294640 or K145, both SPHK2-specific inhibitors, decreased viability of LGL leukaemia cell lines. ABC294640 selectively induced apoptosis in LGL cell lines and freshly isolated LGL leukaemia patient cells compared to normal controls. Mechanistically, SPHK2 inhibition downregulated pro-survival myeloid cell leukaemia-1 (Mcl-1) protein through proteasomal degradation. Targeting of SPHK2 therefore provides a novel therapeutic approach for the treatment of LGL leukaemia.


Asunto(s)
Leucemia Linfocítica Granular Grande/enzimología , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/fisiología , Proteínas de Neoplasias/fisiología , Fosfotransferasas (Aceptor de Grupo Alcohol)/fisiología , Adamantano/análogos & derivados , Adamantano/farmacología , Adulto , Anciano , Apoptosis/efectos de los fármacos , Inducción Enzimática , Femenino , Regulación Leucémica de la Expresión Génica , Humanos , Leucocitos Mononucleares/enzimología , Lisofosfolípidos , Masculino , Persona de Mediana Edad , Proteínas de Neoplasias/biosíntesis , Proteínas de Neoplasias/genética , Fragmentos de Péptidos , Fosforilación , Fosfotransferasas (Aceptor de Grupo Alcohol)/antagonistas & inhibidores , Fosfotransferasas (Aceptor de Grupo Alcohol)/biosíntesis , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteínas Proto-Oncogénicas , Piridinas/farmacología , Interferencia de ARN , ARN Mensajero/biosíntesis , ARN Mensajero/genética , ARN Neoplásico/biosíntesis , ARN Neoplásico/genética , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/farmacología , Esfingosina/análogos & derivados , Tiazolidinedionas/farmacología , Regulación hacia Arriba
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...