Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
Biosensors (Basel) ; 13(8)2023 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-37622915

RESUMEN

Nifedipine, a widely utilized medication, plays a crucial role in managing blood pressure in humans. Due to its global prevalence and extensive usage, close monitoring is necessary to address this widespread concern effectively. Therefore, the development of an electrochemical sensor based on a glassy carbon electrode modified with carbon nanofibers and gold nanoparticles in a Nafion® film was performed, resulting in an active electrode surface for oxidation of the nifedipine molecule. This was applied, together with a voltammetric methodology, for the analysis of nifedipine in biological and environmental samples, presenting a linear concentration range from 0.020 to 2.5 × 10-6 µmol L-1 with a limit of detection 2.8 nmol L-1. In addition, it presented a good recovery analysis in the complexity of the samples, a low deviation in the presence of interfering potentials, and good repeatability between measurements.


Asunto(s)
Nanopartículas del Metal , Nanofibras , Humanos , Oro , Nifedipino , Carbono , Electrodos
2.
Biosensors (Basel) ; 13(7)2023 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-37504089

RESUMEN

The present study reports the development and application of a flow injection analysis (FIA) system for the simultaneous determination of uric acid (UA) and caffeine (CAF) using cathodically pretreated boron-doped diamond electrode (CPT-BDD) and multiple-pulse amperometry (MPA). The electrochemical profiles of UA and CAF were analyzed via cyclic voltammetry in the potential range of 0.20-1.7 V using 0.10 mol L-1 H2SO4 solution as supporting electrolyte. Under optimized conditions, two oxidation peaks at potentials of 0.80 V (UA) and 1.4 V (CAF) were observed; the application of these potentials using multiple-pulse amperometry yielded concentration linear ranges of 5.0 × 10-8-2.2 × 10-5 mol L-1 (UA) and 5.0 × 10-8-1.9 × 10-5 mol L-1 (CAF) and limits of detection of 1.1 × 10-8 and 1.3 × 10-8 mol L-1 for UA and CAF, respectively. The proposed method exhibited good repeatability and stability, and no interference was detected in the electrochemical signals of UA and CAF in the presence of glucose, NaCl, KH2PO4, CaCl2, urea, Pb, Ni, and Cd. The application of the FIA-MPA method for the analysis of environmental samples resulted in recovery rates ranging between 98 and 104%. The results obtained showed that the BDD sensor exhibited a good analytical performance when applied for CAF and UA determination, especially when compared to other sensors reported in the literature.


Asunto(s)
Cafeína , Ácido Úrico , Cafeína/análisis , Oxidación-Reducción , Electrodos , Técnicas Electroquímicas/métodos
3.
Biosensors (Basel) ; 12(10)2022 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-36290997

RESUMEN

This work reports the development and application of a simple, rapid and low-cost voltammetric method for the determination of 3-methylmorphine at nanomolar levels in clinical and environmental samples. The proposed method involves the combined application of a glassy carbon electrode modified with reduced graphene oxide, chitosan and bismuth film (Bi-rGO-CTS/GCE) via square-wave voltammetry using 0.04 mol L-1 Britton-Robinson buffer solution (pH 4.0). The application of the technique yielded low limit of detection of 24 × 10-9 mol L-1 and linear concentration range of 2.5 × 10-7 to 8.2 × 10-6 mol L-1. The Bi-rGO-CTS/GCE sensor was successfully applied for the detection of 3-methylmorphine in the presence of other compounds, including paracetamol and caffeine. The results obtained also showed that the application of the sensor for 3-methylmorphine detection did not experience any significant interference in the presence of silicon dioxide, povidone, cellulose, magnesium stearate, urea, ascorbic acid, humic acid and croscarmellose. The applicability of the Bi-rGO-CTS/GCE sensor for the detection of 3-methylmorphine was evaluated using synthetic urine, serum, and river water samples through addition and recovery tests, and the results obtained were found to be similar to those obtained for the high-performance liquid chromatography method (HPLC)-used as a reference method. The findings of this study show that the proposed voltammetric method is a simple, fast and highly efficient alternative technique for the detection of 3-methylmorphine in both biological and environmental samples.


Asunto(s)
Quitosano , Grafito , Carbono/química , Bismuto , Acetaminofén , Sustancias Húmicas , Povidona , Cafeína , Límite de Detección , Grafito/química , Electrodos , Dióxido de Silicio , Celulosa , Ácido Ascórbico , Urea , Agua , Técnicas Electroquímicas/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...