Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell Stem Cell ; 30(5): 706-721.e8, 2023 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-37098346

RESUMEN

Inter-patient variability and the similarity of healthy and leukemic stem cells (LSCs) have impeded the characterization of LSCs in acute myeloid leukemia (AML) and their differentiation landscape. Here, we introduce CloneTracer, a novel method that adds clonal resolution to single-cell RNA-seq datasets. Applied to samples from 19 AML patients, CloneTracer revealed routes of leukemic differentiation. Although residual healthy and preleukemic cells dominated the dormant stem cell compartment, active LSCs resembled their healthy counterpart and retained erythroid capacity. By contrast, downstream myeloid progenitors constituted a highly aberrant, disease-defining compartment: their gene expression and differentiation state affected both the chemotherapy response and leukemia's ability to differentiate into transcriptomically normal monocytes. Finally, we demonstrated the potential of CloneTracer to identify surface markers misregulated specifically in leukemic cells. Taken together, CloneTracer reveals a differentiation landscape that mimics its healthy counterpart and may determine biology and therapy response in AML.


Asunto(s)
Leucemia Mieloide Aguda , Multiómica , Humanos , Leucemia Mieloide Aguda/genética , Diferenciación Celular , Células Madre Neoplásicas/metabolismo
2.
Cancers (Basel) ; 14(11)2022 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-35681698

RESUMEN

Alectinib is a standard initial treatment for patients with advanced anaplastic lymphoma kinase (ALK) rearranged non-small-cell lung cancer (NSCLC). The current study analyzed a prospective cohort of 24 consecutive alectinib-treated patients and controls in order to comprehensively characterize longitudinal erythrocyte changes under treatment with ALK inhibitors. Upon starting alectinib, all examined patients developed reticulocytosis and abnormal erythrocyte morphology with anisocytosis and a predominance of acanthocytes (64% of red blood cells on average, range 36−100%) in the peripheral blood smear within approximately 2 weeks. Changes were accompanied by a gradual reduction in Eosin-5-maleimide (EMA) binding, which became pathologic (<80% of cells) within 1−2 months in all cases, mimicking an abortive form of hereditary spherocytosis. The latter could be ruled out in 3/3 of analyzed cases by normal sequencing results for the ANK1, EPB42, SLC4A1, SPTA1, or SBTB genes. The direct Coombs test was also negative in 11/11 tested cases. Besides, anemia, increased LDH, and increased bilirubin were noted in a fraction of patients only, ranging between 42 and 68%. Furthermore, haptoglobin decreases were infrequent, occurring in approximately 1/3 of cases only, and mild, with an average value of 0.93 g/L within the normal range of 0.3−2 g/dL, suggesting that hemolysis occurred predominantly in the extravascular compartment, likely due to splenic trapping of the deformed erythrocytes. These changes showed no association with progression-free survival under alectinib or molecular features, i.e., ALK fusion variant or TP53 status of the disease, and resolved upon a switch to an alternative ALK inhibitor. Thus, alectinib induces mild, reversible erythrocyte changes in practically all treated patients, whose most sensitive signs are aberrant red cell morphology in the peripheral smear, a pathologic EMA test, and reactive reticulocytosis. Frank hemolytic anemia is rare, but mild subclinical hemolysis is very frequent and poses differential-diagnostic problems. Alectinib can be continued under the regular control of hemolysis parameters, but the risk of long-term complications, such as cholelithiasis due to increased serum bilirubin in most patients, remains unclear at present.

3.
Hum Mutat ; 40(8): 1145-1155, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31058429

RESUMEN

Achromatopsia (ACHM) is a hereditary cone photoreceptor disorder characterized by the inability to discriminate colors, nystagmus, photophobia, and low-visual acuity. Six genes have been associated with this rare autosomal recessively inherited disease, including the GNAT2 gene encoding the catalytic α-subunit of the G-protein transducin which is expressed in the cone photoreceptor outer segment. Out of a cohort of 1,116 independent families diagnosed with a primary clinical diagnosis of ACHM, we identified 23 patients with ACHM from 19 independent families with likely causative mutations in GNAT2, representing 1.7% of our large ACHM cohort. In total 22 different potentially disease-causing variants, of which 12 are novel, were identified. The mutation spectrum also includes a novel copy number variation, a heterozygous duplication of exon 4, of which the breakpoint matches exactly that of the previously reported exon 4 deletion. Two patients carry just a single heterozygous variant. In addition to our previous study on GNAT2-ACHM, we also present detailed clinical data of these patients.


Asunto(s)
Defectos de la Visión Cromática/genética , Proteínas de Unión al GTP Heterotriméricas/genética , Mutación , Análisis de Secuencia de ADN/métodos , Adolescente , Adulto , Anciano , Niño , Preescolar , Variaciones en el Número de Copia de ADN , Exones , Femenino , Predisposición Genética a la Enfermedad , Humanos , Lactante , Masculino , Persona de Mediana Edad , Linaje , Adulto Joven
4.
FEBS J ; 286(2): 399-412, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-29802807

RESUMEN

The human eye is the organ that is able to react to light in order to provide sharp three-dimensional and colored images. Unfortunately, the health of the eye can be impacted by various stimuli that can lead to vision loss, such as environmental changes, genetic mutations, or aging. Endoplasmic reticulum (ER) stress and unfolded protein response (UPR) signaling have been detected in many diverse ocular diseases, and chemical and genetic approaches to modulate ER stress and specific UPR regulatory molecules have shown beneficial effects in animal models of eye disease. This review highlights specific eye diseases associated with ER stress and UPR activity, based on a recent symposia exploring this theme.


Asunto(s)
Estrés del Retículo Endoplásmico , Retículo Endoplásmico/patología , Oftalmopatías/fisiopatología , Ojo/metabolismo , Respuesta de Proteína Desplegada , Animales , Retículo Endoplásmico/metabolismo , Humanos , Transducción de Señal
5.
Mol Cell Biol ; 34(12): 2283-93, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24732795

RESUMEN

In Saccharomyces cerevisiae and related yeast species, the TEA transcription factor Tec1, together with a second transcription factor, Ste12, controls development, including cell adhesion and filament formation. Tec1-Ste12 complexes control target genes through Tec1 binding sites (TEA consensus sequences [TCSs]) that can be further combined with Ste12 binding sites (pheromone response elements [PREs]) for cooperative DNA binding. The activity of Tec1-Ste12 complexes is known to be under negative control of the Dig1 and Dig2 (Dig1/2) transcriptional corepressors that confer regulation by upstream signaling pathways. Here, we found that Tec1 and Ste12 can associate with the transcriptional coregulators Msa1 and Msa2 (Msa1/2), which were previously found to associate with the cell cycle transcription factor complexes SBF (Swi4/Swi6 cell cycle box binding factor) and MBF (Mbp1/Swi6 cell cycle box binding factor) to control G1-specific transcription. We further show that Tec1-Ste12-Msa1/2 complexes (i) do not contain Swi4 or Mbp1, (ii) assemble at single TCSs or combined TCS-PREs in vitro, and (iii) coregulate genes involved in adhesive and filamentous growth by direct promoter binding in vivo. Finally, we found that, in contrast to Dig proteins, Msa1/2 seem to act as coactivators that enhance the transcriptional activity of Tec1-Ste12. Taken together, our findings add an additional layer of complexity to our understanding of the control mechanisms exerted by the evolutionarily conserved TEA domain and Ste12-like transcription factors.


Asunto(s)
Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/crecimiento & desarrollo , Adhesión Celular , Proteínas de Ciclo Celular/metabolismo , ADN de Hongos/metabolismo , Proteínas de Unión al ADN/metabolismo , Regulación Fúngica de la Expresión Génica , Modelos Biológicos , Regiones Promotoras Genéticas/genética , Unión Proteica , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/metabolismo , Técnicas del Sistema de Dos Híbridos
6.
Eukaryot Cell ; 9(4): 514-31, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20118212

RESUMEN

In Saccharomyces cerevisiae, the TEA transcription factor Tec1 is known to regulate target genes together with a second transcription factor, Ste12. Tec1-Ste12 complexes can activate transcription through Tec1 binding sites (TCSs), which can be further combined with Ste12 binding sites (PREs) for cooperative DNA binding. However, previous studies have hinted that Tec1 might regulate transcription also without Ste12. Here, we show that in vivo, physiological amounts of Tec1 are sufficient to stimulate TCS-mediated gene expression and transcription of the FLO11 gene in the absence of Ste12. In vitro, Tec1 is able to bind TCS elements with high affinity and specificity without Ste12. Furthermore, Tec1 contains a C-terminal transcriptional activation domain that confers Ste12-independent activation of TCS-regulated gene expression. On a genome-wide scale, we identified 302 Tec1 target genes that constitute two distinct classes. A first class of 254 genes is regulated by Tec1 in a Ste12-dependent manner and is enriched for genes that are bound by Tec1 and Ste12 in vivo. In contrast, a second class of 48 genes can be regulated by Tec1 independently of Ste12 and is enriched for genes that are bound by the stress transcription factors Yap6, Nrg1, Cin5, Skn7, Hsf1, and Msn4. Finally, we find that combinatorial control by Tec1-Ste12 complexes stabilizes Tec1 against degradation. Our study suggests that Tec1 is able to regulate TCS-mediated gene expression by Ste12-dependent and Ste12-independent mechanisms that enable promoter-specific transcriptional control.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Regulación Fúngica de la Expresión Génica , Regiones Promotoras Genéticas , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae , Factores de Transcripción/metabolismo , Secuencia de Aminoácidos , Adhesión Celular , Proteínas de Unión al ADN/genética , Perfilación de la Expresión Génica , Genes Reporteros , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Análisis por Micromatrices , Datos de Secuencia Molecular , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Alineación de Secuencia , Factores de Transcripción/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...