Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
New Phytol ; 240(1): 114-126, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37434275

RESUMEN

Drylands of the southwestern United States are rapidly warming, and rainfall is becoming less frequent and more intense, with major yet poorly understood implications for ecosystem structure and function. Thermography-based estimates of plant temperature can be integrated with air temperature to infer changes in plant physiology and response to climate change. However, very few studies have evaluated plant temperature dynamics at high spatiotemporal resolution in rainfall pulse-driven dryland ecosystems. We address this gap by incorporating high-frequency thermal imaging into a field-based precipitation manipulation experiment in a semi-arid grassland to investigate the impacts of rainfall temporal repackaging. All other factors held constant, we found that fewer/larger precipitation events led to cooler plant temperatures (1.4°C) compared to that of many/smaller precipitation events. Perennials, in particular, were 2.5°C cooler than annuals under the fewest/largest treatment. We show these patterns were driven by: increased and consistent soil moisture availability in the deeper soil layers in the fewest/largest treatment; and deeper roots of perennials providing access to deeper plant available water. Our findings highlight the potential for high spatiotemporal resolution thermography to quantify the differential sensitivity of plant functional groups to soil water availability. Detecting these sensitivities is vital to understanding the ecohydrological implications of hydroclimate change.


Asunto(s)
Ecosistema , Termografía , Lluvia , Plantas , Suelo , Agua/análisis , Cambio Climático
2.
Glob Chang Biol ; 29(13): 3634-3651, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37070967

RESUMEN

The increasing frequency and intensity of climate extremes and complex ecosystem responses motivate the need for integrated observational studies at low latency to determine biosphere responses and carbon-climate feedbacks. Here, we develop a satellite-based rapid attribution workflow and demonstrate its use at a 1-2-month latency to attribute drivers of the carbon cycle feedbacks during the 2020-2021 Western US drought and heatwave. In the first half of 2021, concurrent negative photosynthesis anomalies and large positive column CO2 anomalies were detected with satellites. Using a simple atmospheric mass balance approach, we estimate a surface carbon efflux anomaly of 132 TgC in June 2021, a magnitude corroborated independently with a dynamic global vegetation model. Integrated satellite observations of hydrologic processes, representing the soil-plant-atmosphere continuum (SPAC), show that these surface carbon flux anomalies are largely due to substantial reductions in photosynthesis because of a spatially widespread moisture-deficit propagation through the SPAC between 2020 and 2021. A causal model indicates deep soil moisture stores partially drove photosynthesis, maintaining its values in 2020 and driving its declines throughout 2021. The causal model also suggests legacy effects may have amplified photosynthesis deficits in 2021 beyond the direct effects of environmental forcing. The integrated, observation framework presented here provides a valuable first assessment of a biosphere extreme response and an independent testbed for improving drought propagation and mechanisms in models. The rapid identification of extreme carbon anomalies and hotspots can also aid mitigation and adaptation decisions.


Asunto(s)
Sequías , Ecosistema , Atmósfera , Ciclo del Carbono , Suelo , Plantas , Carbono , Cambio Climático
3.
Glob Chang Biol ; 29(1): 110-125, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36169920

RESUMEN

Vegetation cover creates competing effects on land surface temperature: it typically cools through enhancing energy dissipation and warms via decreasing surface albedo. Global vegetation has been previously found to overall net cool land surfaces with cooling contributions from temperate and tropical vegetation and warming contributions from boreal vegetation. Recent studies suggest that dryland vegetation across the tropics strongly contributes to this global net cooling feedback. However, observation-based vegetation-temperature interaction studies have been limited in the tropics, especially in their widespread drylands. Theoretical considerations also call into question the ability of dryland vegetation to strongly cool the surface under low water availability. Here, we use satellite observations to investigate how tropical vegetation cover influences the surface energy balance. We find that while increased vegetation cover would impart net cooling feedbacks across the tropics, net vegetal cooling effects are subdued in drylands. Using observations, we determine that dryland plants have less ability to cool the surface due to their cooling pathways being reduced by aridity, overall less efficient dissipation of turbulent energy, and their tendency to strongly increase solar radiation absorption. As a result, while proportional greening across the tropics would create an overall biophysical cooling feedback, dryland tropical vegetation reduces the overall tropical surface cooling magnitude by at least 14%, instead of enhancing cooling as suggested by previous global studies.


Asunto(s)
Cambio Climático , Plantas , Temperatura
4.
Sci Adv ; 8(44): eabq7827, 2022 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-36332021

RESUMEN

Plant water stress occurs at the point when soil moisture (SM) limits transpiration, defining a critical SM threshold (θcrit). Knowledge of the spatial distribution of θcrit is crucial for future projections of climate and water resources. Here, we use global eddy covariance observations to quantify θcrit and evaporative fraction (EF) regimes. Three canonical variables describe how EF is controlled by SM: the maximum EF (EFmax), θcrit, and slope (S) between EF and SM. We find systematic differences of these three variables across biomes. Variation in θcrit, S, and EFmax is mostly explained by soil texture, vapor pressure deficit, and precipitation, respectively, as well as vegetation structure. Dryland ecosystems tend to operate at low θcrit and show adaptation to water deficits. The negative relationship between θcrit and S indicates that dryland ecosystems minimize θcrit through mechanisms of sustained SM extraction and transport by xylem. Our results further suggest an optimal adaptation of local EF-SM response that maximizes growing-season evapotranspiration and photosynthesis.

5.
Geophys Res Lett ; 49(7): e2021GL097697, 2022 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-35865657

RESUMEN

The transition of evapotranspiration between energy- and water-limitation regimes also denotes a nonlinear change in surface water and energy coupling strength. The regime transitions are primarily dominated by available moisture in the soil, although other micro-meteorological factors also play a role. Remotely sensed soil moisture is frequently used for detecting evapotranspiration regime transitions during inter storm dry downs. However, its sampling depth does not include the entire soil profile, over which water uptake is dominated by plant root distribution. We use flux tower, surface (θ s ; observations at 5 cm), and vertically integrated in situ soil moisture ( θ v ; 0-50 cm) observations to address the question: Can surface soil moisture robustly identify evapotranspiration regime transitions? Results demonstrate that θ s and θ v are hydraulically linked and have synchronized evapotranspiration regime transitions. As such, θ s and θ v capture comparable statistics of evapotranspiration regime prevalence, which supports the utility of remote-sensing θ s for large-scale land-atmosphere exchange analysis.

6.
Artículo en Inglés | MEDLINE | ID: mdl-35003512

RESUMEN

Satellite soil moisture and vegetation optical depth [(VOD); related to the total vegetation water mass per unit area] are increasingly being used to study water relations in the soil-plant continuum across the globe. However, soil moisture and VOD are typically jointly estimated, where errors in the optimization approach can cause compensation between both variables and confound such studies. It is thus critical to quantify how satellite microwave measurement errors propagate into soil moisture and VOD. Such a study is especially important for VOD given limited investigations of whether VOD reflects in situ plant physiology. Furthermore, despite new approaches that constrain (or regularize) VOD dynamics to reduce soil moisture errors, there is limited study of whether regularization reduces VOD errors without obscuring true vegetation temporal dynamics. Here, we find that, across the globe, VOD is less robust to measurement error (more difficult for optimization methods to find the true solution) than soil moisture in their joint estimation. However, a moderate degree of regularization (via time-constrained VOD) reduces errors in VOD to a greater degree than soil moisture and reduces spurious soil moisture-VOD coupling. Furthermore, despite constraining VOD time dynamics, regularized VOD variations on subweekly scales are both closer to simulated true VOD time series and have global VOD post-rainfall responses with reduced error signatures compared to VOD retrievals without regularization. Ultimately, we recommend moderately regularized VOD for use in large scale studies of soil-plant water relations because it suppresses noise and spurious soil moisture-VOD coupling without removing the physical signal.

7.
Nat Plants ; 4(12): 1026-1033, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30518832

RESUMEN

The degree to which individual pulses of available water drive plant activity across diverse biomes and climates is not well understood. It has previously only been investigated in a few dryland locations. Here, plant water uptake following pulses of surface soil moisture, an indicator for the pulse-reserve hypothesis, is investigated across South America, Africa and Australia with satellite-based estimates of surface soil and canopy water content. Our findings show that this behaviour is widespread: occurring over half of the vegetated landscapes. We estimate spatially varying soil moisture thresholds at which plant water uptake ceases, noting dependence on soil texture and proximity to the wilting point. The soil type and biome-dependent soil moisture threshold and the plant soil water uptake patterns at the scale of Earth system models allow a unique opportunity to test and improve model parameterization of vegetation function under water limitation.


Asunto(s)
Plantas/metabolismo , Suelo/química , Agua/fisiología , África , Australia , Ecosistema , Modelos Teóricos , Estado de Hidratación del Organismo , Fenómenos Fisiológicos de las Plantas , Lluvia , Tecnología de Sensores Remotos , América del Sur
8.
Bull Hosp Jt Dis (2013) ; 71(4): 253-6, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24344616

RESUMEN

Ice hockey is a fast paced sport with unique injury potential. A covering physician must be prepared to acutely manage injuries to the face, neck, and chest that are not common in orthopedic practice. Injuries about the face seen in ice hockey include facial fractures, lacerations, and eye and dental injuries. Neck trauma can result in lacerations and neurologic injury. Commotio cordis and sudden cardiac death are potentially fatal conditions seen in ice hockey. This review details the appropriate acute management of these conditions for the physician covering an ice hockey game. Knowledge of these conditions and appropriate rink-side management can be potentially life-saving.


Asunto(s)
Servicios Médicos de Urgencia , Traumatismos Faciales/terapia , Hockey/lesiones , Traumatismos del Cuello/terapia , Ortopedia , Traumatismos Torácicos/terapia , Traumatismos Faciales/diagnóstico , Traumatismos Faciales/etiología , Humanos , Traumatismos del Cuello/diagnóstico , Traumatismos del Cuello/etiología , Traumatismos Torácicos/diagnóstico , Traumatismos Torácicos/etiología , Factores de Tiempo , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...