Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Psychiatry ; 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38977918

RESUMEN

Cancer patients are commonly affected by fatigue. Herein, we sought to examine epigenetic modifications (i.e., DNA methylation) related to fatigue in peripheral blood among patients during and after treatment for head and neck cancer (HNC). Further, we determined whether these modifications were associated with gene expression and inflammatory protein markers, which we have previously linked to fatigue in HNC. This prospective, longitudinal study enrolled eligible patients with data collected at pre-radiotherapy, end of radiotherapy, and six months and one-year post-radiotherapy. Fatigue data were reported by patients using the Multidimensional Fatigue Inventory (MFI)-20. DNA methylation (Illumina MethylationEPIC) and gene expression (Applied Biosystems Clariom S) arrays and assays for seven inflammatory markers (R&D Systems multiplex) were performed. Mixed models and enrichment analyses were applied to establish the associations. A total of 386 methylation loci were associated with fatigue among 145 patients (False Discovery Rate [FDR] < 0.05). Enrichment analyses showed the involvement of genes related to immune and inflammatory responses, insulin and lipid metabolism, neuropsychological disorders, and tumors. We further identified 16 methylation-gene expression pairs (FDR < 0.05), which were linked to immune and inflammatory responses and lipid metabolism. Ninety-one percent (351) of the 386 methylation loci were also significantly associated with inflammatory markers (e.g., interleukin 6, c-reactive protein; FDR < 0.05), which further mediated the association between methylation and fatigue (FDR < 0.05). These data suggest that epigenetic modifications associated with inflammation and immunometabolism, in conjunction with relevant gene expression and protein markers, are potential targets for treating fatigue in HNC patients. The findings also merit future prospective studies in other cancer populations as well as interventional investigations.

2.
Neuropsychopharmacology ; 49(3): 593-599, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37752223

RESUMEN

Prior research has shown that racial discrimination (RD) impacts activation in threat network regions, including the ventromedial prefrontal cortex (vmPFC) and middle occipital cortex during attention to threat-relevant stimuli. However, little is known about the biological mechanisms that may modulate these effects; inflammation may be a pathway linking RD and threat network activation. As such, the current study aimed to explore whether systemic inflammation, measured by C-reactive protein (CRP) levels, may moderate the relationship between RD and activation in the vmPFC and middle occipital cortex during attention to threat. Blood samples for inflammatory marker (CRP) assays were obtained from forty Black American women (mean [SD] age, 39.93 [9.97] years; range, 22-58 years) recruited from an ongoing trauma study; participants also viewed threat-relevant stimuli as part of an attention task during fMRI. We found that CRP moderated the relationship between RD and vmPFC activation during attention to threat, such that participants with relatively higher concentrations of CRP ( ≥ 23.97 mg/L) demonstrated significant positive associations between RD and vmPFC activation [ß = 0.18, CI (0.04, 0.32), t = 2.65, p = 0.01]. No significant associations were observed for participants who showed moderate (10.89 mg/L) or low (0.20 mg/L) CRP concentrations. CRP did not moderate the relationship between RD and middle occipital cortex activation. Our data present a mechanism through which RD may influence immune system activation and, in turn, threat network activation. Inflammation may contribute to brain health vulnerabilities in Black Americans via its effects on threat circuits; this merits further investigation in large-scale studies.


Asunto(s)
Proteína C-Reactiva , Racismo , Adulto , Femenino , Humanos , Negro o Afroamericano , Mapeo Encefálico , Inflamación/diagnóstico por imagen , Imagen por Resonancia Magnética , Corteza Prefrontal/diagnóstico por imagen , Corteza Prefrontal/fisiología , Adulto Joven , Persona de Mediana Edad
3.
Brain Behav Immun Health ; 30: 100649, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37396338

RESUMEN

Purpose: Head and neck cancer (HNC) patients may experience multiple co-occurring neuropsychological symptoms (NPS) cluster, including fatigue, depression, pain, sleep disturbance, and cognitive impairment. While inflammation has been attributed as a key mechanism for some of these symptoms, its association with the NPS as a cluster of symptoms is unknown. Thus, the aim of this study was to examine the association between peripheral inflammation and NPS cluster among HNC patients over cancer treatment (radiotherapy with or without chemotherapy). Methods: HNC patients were recruited and followed at pre-treatment, end of treatment, three months and one-year post-treatment. Plasma inflammatory markers, including C-reactive protein (CRP), tumor necrosis factor-alpha (TNFA), soluble tumor necrosis factor receptor-2 (sTNFR2), interleukin-1 beta (IL1-ß), interleukin-6 (IL-6), interleukin-10 (IL-10), monocyte chemotactic protein-1 (MCP-1), and interleukin-1 receptor antagonist (IL-1RA) and patient-reported NPS cluster were collected at the 4 time points. Associations between inflammatory markers and the NPS cluster were analyzed using linear mixed-effects models and generalized estimating equations (GEE) models controlling covariates. Results: 147 HNC patients were eligible for analysis. 56% of the patients received chemoradiotherapy as treatment. The highest NPS cluster score was reported at the end of treatment, which gradually decreased over time. An increase in inflammatory markers including CRP, sTNFR2, IL-6 and IL-1RA was associated with higher continuous NPS cluster scores (p<0.001, p = 0.003, p<0.001, p<0.001; respectively). GEE further confirmed that patients with at least two moderate symptoms had elevated sTNFR2, IL-6, and IL-1RA (p = 0.017, p = 0.038, p = 0.008; respectively). Notably, this positive association between NPS cluster and inflammatory markers was still significant at one-year post-treatment for CRP (p = 0.001), sTNFR2 (p = 0.006), and IL-1RA (p = 0.043). Conclusions: Most HNC patients experienced NPS clusters over time, especially immediately after the end of treatment. Elevated inflammation, as represented by inflammatory markers, was strongly associated with worse NPS cluster over time; this trend was also notable at one-year post-treatment. Our findings suggest that peripheral inflammation plays a pivotal role in the NPS cluster over cancer treatment, including long-term follow-ups. Interventions on reducing peripheral inflammation may contribute to alleviating the NPS cluster in cancer patients.

4.
Head Neck ; 45(8): 1952-1966, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37288586

RESUMEN

INTRODUCTION: The aim of this study was to explore the associations among physical activity (PA), inflammatory markers, and quality of life (QoL) from preradiotherapy to 1-year postradiotherapy for patients with head and neck cancer (HNC). METHODS: This was an observational longitudinal study. Mixed-effect models incorporating within-subject correlation were used to examine the relationship among the three key variables. RESULTS: Aerobically active patients had significantly lower levels of sTNFR2 (but not other inflammatory markers) than aerobically inactive patients. Being aerobically active and lower inflammation were independently associated with better total QoL scores after adjusting covariates. The trend was similar for patients engaged in strength exercises. CONCLUSIONS: Being aerobically active was associated with lower inflammation as represented by sTNFR2 but not with other inflammatory markers. Higher PA (aerobic and strength) and lower inflammation were linked to better QoL. More research is warranted to validate the association among PA, inflammation, and QoL.


Asunto(s)
Neoplasias de Cabeza y Cuello , Calidad de Vida , Humanos , Estudios Longitudinales , Ejercicio Físico , Neoplasias de Cabeza y Cuello/terapia , Inflamación , Encuestas y Cuestionarios
5.
J Neurovirol ; 29(4): 440-448, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37289360

RESUMEN

Depression is a common illness in people with HIV (PWH) and is associated with substantial morbidity and mortality. The mechanisms that underpin depression in PWH remain incompletely elucidated, and more research is therefore needed to develop effective treatments. One hypothesis is that neurotransmitter levels may be altered. These levels could be influenced by the chronic inflammation and viral persistence that occurs in PWH. We examined a panel of cerebrospinal fluid (CSF) neurotransmitters in PWH on suppressive antiretroviral therapy (ART), many of whom had a current depression diagnosis. CSF monoamine neurotransmitters and their metabolites were measured from participants in studies at the Emory Center for AIDS Research (CFAR). Only participants on stable ART with suppressed HIV RNA from both plasma and CSF were analyzed. Neurotransmitter levels were measured with high-performance liquid chromatography (HPLC). Neurotransmitters and their metabolites included dopamine (DA), homovanillic acid (HVA, a major metabolite of dopamine), serotonin (5-HT), 5-hydroxyindole-3-acetic acid (5-HIAA, a major metabolite of serotonin), and 4-hydroxy-3-methoxyphenylglycol (MHPG, a major metabolite of norepinephrine). Multivariable logistic regression was used to evaluate factors associated with depression. There were 79 PWH with plasma and CSF HIV RNA levels < 200 copies/mL at the time of the visit, and 25 (31.6%) carried a current diagnosis of depression. Participants with depression were significantly older (median age 53 years versus 47 years, P = 0.014) and were significantly less likely to be African American (48.0% versus 77.8%, P = 0.008). Participants with depression had significantly lower dopamine levels (median 0.49 ng/mL versus 0.62 ng/mL, P = 0.03) and significantly lower 5-HIAA levels (median 12.57 ng/mL versus 15.41 ng/mL, P = 0.015). Dopamine and 5-HIAA were highly correlated. In the multivariable logistic regression models, lower 5-HIAA was significantly associated with the depression diagnosis when accounting for other significant demographic factors. The associations between lower 5-HIAA, lower dopamine, and depression in PWH suggest that altered neurotransmission may contribute to these comorbid conditions. However, the effects of antidepressants on neurotransmitters cannot be ruled out as a factor in the 5-HIAA results.


Asunto(s)
Dopamina , Serotonina , Humanos , Persona de Mediana Edad , Dopamina/metabolismo , Serotonina/metabolismo , Ácido Hidroxiindolacético/líquido cefalorraquídeo , Depresión , Metoxihidroxifenilglicol/líquido cefalorraquídeo , Neurotransmisores
6.
Adv Neurobiol ; 30: 387-416, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36928859

RESUMEN

Based on mounting clinical and translational evidence demonstrating the impact of exogenously administered inflammatory stimuli on the brain and behavior, increased endogenous inflammation has received attention as one pathophysiologic process contributing to psychiatric illnesses and particularly depression. Increased endogenous inflammation is observed in a significant proportion of depressed patients and has been associated with reduced responsiveness to standard antidepressant therapies. This chapter presents recent evidence that inflammation affects neurotransmitters and neurocircuits to contribute to specific depressive symptoms including anhedonia, motor slowing, and anxiety, which may preferentially improve after anti-cytokine therapies in patients with evidence of increased inflammation. Existing and novel pharmacological strategies that target inflammation or its downstream effects on the brain and behavior will be discussed in the context of a need for intelligent trial design in order to meaningfully translate these concepts and develop more precise therapies for depressed patients with increased inflammation.


Asunto(s)
Encéfalo , Depresión , Humanos , Depresión/tratamiento farmacológico , Encéfalo/fisiología , Inflamación/tratamiento farmacológico , Antidepresivos/uso terapéutico , Trastornos de Ansiedad/tratamiento farmacológico
7.
Biol Psychiatry ; 93(5): 405-418, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36725140

RESUMEN

Findings from numerous laboratories and across neuroimaging modalities have consistently shown that exogenous administration of cytokines or inflammatory stimuli that induce cytokines disrupts circuits and networks involved in motivation and motor activity, threat detection, anxiety, and interoceptive and emotional processing. While inflammatory effects on neural circuits and relevant behaviors may represent adaptive responses promoting conservation of energy and heightened vigilance during immune activation, chronically elevated inflammation may contribute to symptoms of psychiatric illnesses. Indeed, biomarkers of inflammation such as cytokines and acute phase reactants are reliably elevated in a subset of patients with unipolar or bipolar depression, anxiety-related disorders, and schizophrenia and have been associated with differential treatment responses and poor clinical outcomes. A growing body of literature also describes higher levels of endogenous inflammatory markers and altered, typically lower functional or structural connectivity within these circuits in association with transdiagnostic symptoms such as anhedonia and anxiety in psychiatric and at-risk populations. This review presents recent evidence that inflammation and its effects on the brain may serve as one molecular and cellular mechanism of dysconnectivity within anatomically and/or functionally connected cortical and subcortical regions in association with transdiagnostic symptoms. We also discuss the need to establish reproducible methods to assess inflammation-associated dysconnectivity in relation to behavior for use in translational studies or biomarker-driven clinical trials for novel pharmacological or behavioral interventions targeting inflammation or its effects on the brain.


Asunto(s)
Trastorno Bipolar , Trastornos Mentales , Humanos , Encéfalo , Inflamación , Citocinas , Imagen por Resonancia Magnética
8.
Neuropsychopharmacology ; 48(6): 929-935, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36635595

RESUMEN

Chronic inflammation has been implicated in the pathophysiology of major depressive disorder (MDD). Activating the resolution of inflammation through ω-3 fatty acid supplementation may prove to be a successful therapeutic strategy for the treatment of MDD. Patients with MDD, body mass index >25 kg/m2, and plasma high-sensitivity C-reactive protein ≥3 µg/mL (n = 61) were enrolled in a 12-week randomized trial consisting of 4 parallel arms: EPA 1, 2, and 4 g/d, and placebo. The supplement contained EPA and DHA in a 3.9:1 ratio. Depression symptoms were assessed using the IDS-C30 scale. Plasma fatty acids and pro-resolving lipid mediators (SPMs) were measured in 42 study completers at baseline and at the end of treatment by liquid chromatography/mass spectrometry. The response rate (≥50% reduction in IDS-30 score) was higher in the 4 g/d EPA arm than placebo (Cohen d = 0.53). In the 4 g/d EPA arm, responders had significantly greater increases in 18-hydroxyeicosapentaenoic acid (18-HEPE) and 13-hydroxydocosahexaenoic acid (13-HDHA) than non-responders (p < 0.05). Within the 4 g/d EPA arm, the increase in 18-HEPE was significantly associated with reductions in plasma hs-CRP concentrations (p < 0.05) and IDS-C30 scores (p < 0.01). In summary, response rates were greater among patients with MDD randomized to EPA 4 g/d supplementation and in those who showed a greater ability to activate the synthesis of 18-HEPE. The inverse association of 18-HEPE with both systemic inflammation and symptoms of depression highlights the activation of the resolution of inflammation as a likely mechanism in the treatment of MDD with ω-3 fatty acid supplementation.


Asunto(s)
Trastorno Depresivo Mayor , Ácidos Grasos Omega-3 , Humanos , Trastorno Depresivo Mayor/tratamiento farmacológico , Ácido Eicosapentaenoico/uso terapéutico , Ácidos Docosahexaenoicos/uso terapéutico , Inflamación , Suplementos Dietéticos , Proteína C-Reactiva
10.
Transl Psychiatry ; 12(1): 313, 2022 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-35927237

RESUMEN

Posttraumatic stress disorder (PTSD) develops in a subset of individuals upon exposure to traumatic stress. In addition to well-defined psychological and behavioral symptoms, some individuals with PTSD also exhibit elevated concentrations of inflammatory markers, including C-reactive protein, interleukin-6, and tumor necrosis factor-α. Moreover, PTSD is often co-morbid with immune-related conditions, such as cardiometabolic and autoimmune disorders. Numerous factors, including lifetime trauma burden, biological sex, genetic background, metabolic conditions, and gut microbiota, may contribute to inflammation in PTSD. Importantly, inflammation can influence neural circuits and neurotransmitter signaling in regions of the brain relevant to fear, anxiety, and emotion regulation. Given the link between PTSD and the immune system, current studies are underway to evaluate the efficacy of anti-inflammatory treatments in those with PTSD. Understanding the complex interactions between PTSD and the immune system is essential for future discovery of diagnostic and therapeutic tools.


Asunto(s)
Trastornos por Estrés Postraumático , Trastornos de Ansiedad , Miedo/fisiología , Humanos , Sistema Inmunológico , Inflamación , Trastornos por Estrés Postraumático/psicología
11.
J Clin Psychiatry ; 83(5)2022 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-36005883

RESUMEN

Objective: This study compared the impact of 3 eicosapentaenoic acid (EPA) doses versus placebo on inflammatory biomarkers and depressive symptoms.Methods: Sixty-one unmedicated adults (75% female; 45.5 ± 13.8 years) with DSM-5 major depressive disorder (MDD), body mass index > 25 kg/m2, and plasma high-sensitivity C-reactive protein (hs-CRP) ≥ 3.0 mg/L were randomly assigned to receive EPA 1 g/d, 2 g/d, or 4 g/d or placebo for 12 weeks. Prespecified endpoints were a ≥ 0.40 effect size decrease in plasma interleukin (IL)-6, peripheral blood mononuclear cell (PBMC) cytokines, and lipopolysaccharide-stimulated tumor necrosis factor (TNF) production. Response was defined as a ≥ 50% decrease of Inventory of Depressive Symptomatology, Clinician-Rated version (IDS-C30) scores. We compared outcomes for the 3 EPA doses versus placebo.Results: In 45 completers, only median PBMC TNF decreased at 2 g/d EPA. No EPA dose produced a ≥ 0.35 effect size reduction in plasma IL-6 or mitogen-stimulated TNF. Response rates for EPA 4 g/d were 64%, versus 40% for placebo (odds ratio [OR] = 2.63; Cohen d = 0.53), 38% for EPA 1 g/d, and 36% for EPA 2 g/d (all P > .05). EPA 4 g/d showed a significant correlation between percent decrease in plasma hs-CRP and IDS-C30 symptom reduction at 12 weeks (Spearman ρ = 0.691, P = .019).Conclusions: EPA 4 g/d demonstrated a medium effect size for response rates versus placebo. This dose may alleviate MDD in overweight individuals with elevated inflammatory markers, and change in hs-CRP may be correlated with clinical response.Trial Registration: ClinicalTrials.gov identifier: NCT02553915.


Asunto(s)
Trastorno Depresivo Mayor , Ácidos Grasos Omega-3 , Adulto , Proteína C-Reactiva/metabolismo , Trastorno Depresivo Mayor/diagnóstico , Suplementos Dietéticos , Ácidos Docosahexaenoicos , Método Doble Ciego , Ácido Eicosapentaenoico/efectos adversos , Femenino , Humanos , Inflamación/tratamiento farmacológico , Interleucina-6 , Leucocitos Mononucleares/metabolismo , Masculino
12.
Mol Psychiatry ; 27(10): 4113-4121, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35927580

RESUMEN

Increased inflammation in major depressive disorder (MDD) has been associated with low functional connectivity (FC) in corticostriatal reward circuits and symptoms of anhedonia, relationships which may involve the impact of inflammation on synthesis and release of dopamine. To test this hypothesis while establishing a platform to examine target engagement of potential therapies in patients with increased inflammation, medically stable unmedicated adult MDD outpatients enrolled to have a range of inflammation (as indexed by plasma C-reactive protein [CRP] levels) were studied at two visits involving acute challenge with the dopamine precursor levodopa (L-DOPA; 250 mg) and placebo (double-blind, randomized order ~1-week apart). The primary outcome of resting-state (rs)FC in a classic ventral striatum to ventromedial prefrontal cortex reward circuit was calculated using a targeted, a priori approach. Data available both pre- and post-challenge (n = 31/40) established stability of rsFC across visits and determined CRP > 2 mg/L as a cut-point for patients exhibiting positive FC responses (post minus pre) to L-DOPA versus placebo (p < 0.01). Higher post-L-DOPA FC in patients with CRP > 2 mg/L was confirmed in all patients (n = 40) where rsFC data were available post-challenge (B = 0.15, p = 0.006), and in those with task-based (tb)FC during reward anticipation (B = 0.15, p = 0.013). While effort-based motivation outside the scanner positively correlated with rsFC independent of treatment or CRP, change in anhedonia scores negatively correlated with rsFC after L-DOPA only in patients with CRP > 2 mg/L (r = -0.56, p = 0.012). FC in reward circuitry should be further validated in larger samples as a biomarker of target engagement for potential treatments including dopaminergic agents in MDD patients with increased inflammation.


Asunto(s)
Anhedonia , Trastorno Depresivo Mayor , Adulto , Humanos , Anhedonia/fisiología , Dopamina , Trastorno Depresivo Mayor/tratamiento farmacológico , Vías Nerviosas , Depresión , Levodopa/uso terapéutico , Imagen por Resonancia Magnética , Recompensa , Inflamación/metabolismo
13.
Brain Behav Immun ; 105: 122-130, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35772683

RESUMEN

Inflammatory stimuli have been shown to impact brain regions involved in threat detection and emotional processing including amygdala and ventromedial prefrontal cortex (vmPFC), and to increase anxiety. Biomarkers of endogenous inflammation, including inflammatory cytokines and C-reactive protein (CRP), are reliably elevated in a subset of patients with depression and anxiety-related disorders such as post-traumatic stress disorder (PTSD), and have been associated with high anxiety in population studies. We previously reported that plasma CRP and cytokines in patients with depression were negatively correlated with resting-state functional connectivity (FC) between right amygdala and vmPFC, as assessed using both ROI to voxel-wise and targeted FC approaches, in association with symptoms of anxiety, particularly in patients with comorbid anxiety disorders or PTSD. To determine whether relationships between inflammation, right amygdala-vmPFC FC, and anxiety are reproducible across patient samples and research settings, we employed an a priori, hypothesis-driven approach to examine relationships between inflammation, targeted right amygdala-vmPFC FC and anxiety in a cohort of African American (AA) women (n = 54) recruited from an inner-city hospital population reliably found to have higher levels of inflammation (median CRP âˆ¼ 4 mg/L) as well as symptoms of anxiety, depression and PTSD. Higher concentrations of plasma CRP were associated with lower right amygdala-vmPFC FC (r = -0.32, p = 0.017), and this relationship remained significant when controlling for age, body mass index and number of lifetime trauma events experienced, as well as severity of PTSD and depression symptoms (all p < 0.05). This amygdala-vmPFC FC was similarly associated with a composite score of three inflammatory cytokines in a subset of women where plasma was available for analysis (n = 33, r = -0.33, p = 0.058; adjusted r = -0.43, p = 0.026 when controlling for covariates including PTSD and depression symptom severity). Lower right amygdala-vmPFC FC was in turn associated with higher levels of anxiety reported to be generally experienced on the State-Trait Anxiety Inventory, trait component (adjusted r = -0.32, p = 0.039 when controlling for covariates). Exploratory analyses also revealed a negative correlation between severity of childhood maltreatment and right amygdala-vmPFC FC (r = -0.32, p = 0.018) that was independent of CRP and its association with FC, as well as an association between low amygdala-vmPFC FC and severity of PTSD symptoms, specifically the re-experiencing/intrusive symptom subscale (adjusted r = -0.32, p = 0.028 when controlling for covariates). While CRP was not linearly associated with either anxiety or PTSD symptoms, CRP concentrations were higher in women reporting clinically significant anxiety or PTSD symptom severity when these symptoms were considered together (both p < 0.05), but with no interaction. These results support our primary hypothesis that higher inflammation was associated with lower amygdala-vmPFC FC, a relationship that was detected using a hypothesis-driven, targeted approach. Findings also support that this phenotype of high CRP and low vmPFC FC was observed in association with anxiety in primary analyses, as well as symptoms of PTSD in exploratory analyses, in a cohort recruited from an inner-city population of AA women enriched for high inflammation, history of trauma exposure, and symptom severity. Larger, longitudinal samples are required to fully tease apart causal relationships between inflammatory biomarkers, FC and PTSD-related symptoms in future studies.


Asunto(s)
Trastornos por Estrés Postraumático , Negro o Afroamericano , Amígdala del Cerebelo/metabolismo , Ansiedad , Trastornos de Ansiedad , Proteína C-Reactiva/metabolismo , Citocinas/metabolismo , Femenino , Hospitales Urbanos , Humanos , Inflamación/metabolismo , Imagen por Resonancia Magnética/métodos , Vías Nerviosas , Corteza Prefrontal/metabolismo , Trastornos por Estrés Postraumático/psicología
14.
Neurobiol Stress ; 19: 100462, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35655933

RESUMEN

Inflammation is associated with symptoms of anhedonia, a core feature of major depression (MD). We have shown that MD patients with high inflammation as measured by plasma C-reactive protein (CRP) and anhedonia display gene signatures of metabolic reprograming (e.g., shift to glycolysis) necessary to sustain cellular immune activation. To gain preliminary insight into the immune cell subsets and transcriptomic signatures that underlie increased inflammation and its relationship with behavior in MD at the single-cell (sc) level, herein we conducted scRNA-Seq on peripheral blood mononuclear cells from a subset of medically-stable, unmedicated MD outpatients. Three MD patients with high CRP (>3 mg/L) before and two weeks after anti-inflammatory challenge with the tumor necrosis factor antagonist infliximab and three patients with low CRP (≤3 mg/L) were studied. Cell clusters were identified using a Single Cell Wizard pipeline, followed by pathway analysis. CD14+ and CD16+ monocytes were more abundant in MD patients with high CRP and were reduced by 29% and 55% respectively after infliximab treatment. Within CD14+ and CD16+ monocytes, genes upregulated in high CRP patients were enriched for inflammatory (phagocytosis, complement, leukocyte migration) and immunometabolic (hypoxia-inducible factor [HIF]-1, aerobic glycolysis) pathways. Shifts in CD4+ T cell subsets included ∼30% and ∼10% lower abundance of CD4+ central memory (TCM) and naïve cells and ∼50% increase in effector memory-like (TEM-like) cells in high versus low CRP patients. TCM cells of high CRP patients displayed downregulation of the oxidative phosphorylation (OXPHOS) pathway, a main energy source in this cell type. Following infliximab, changes in the number of CD14+ monocytes and CD4+ TEM-like cells predicted improvements in anhedonia scores (r = 1.0, p < 0.001). In sum, monocytes and CD4+ T cells from MD patients with increased inflammation exhibited immunometabolic reprograming in association with symptoms of anhedonia. These findings are the first step toward determining the cellular and molecular immune pathways associated with inflammatory phenotypes in MD, which may lead to novel immunomodulatory treatments of psychiatric illnesses with increased inflammation.

15.
Curr Top Behav Neurosci ; 58: 397-419, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34971449

RESUMEN

Anhedonia, characterized by a lack of motivation, interest, or ability to experience pleasure, is a prominent symptom of depression and other psychiatric disorders and has been associated with poor response to standard therapies. One pathophysiologic pathway receiving increased attention for its potential role in anhedonia is inflammation and its effects on the brain. Exogenous administration of inflammatory stimuli to humans and laboratory animals has reliably been found to affect neurotransmitters and neurocircuits involved in reward processing, including the ventral striatum and ventromedial prefrontal cortex, in association with reduced motivation. Moreover, a rich literature including meta-analyses describes increased inflammation in a significant proportion of patients with depression and other psychiatric illnesses involving anhedonia, as evident by elevated inflammatory cytokines, acute phase proteins, chemokines, and adhesion molecules in both the periphery and central nervous system. This endogenous inflammation may arise from numerous sources including stress, obesity or metabolic dysfunction, genetics, and lifestyle factors, many of which are also risk factors for psychiatric illness. Consistent with laboratory studies involving exogenous administration of peripheral inflammatory stimuli, neuroimaging studies have further confirmed that increased endogenous inflammation in depression is associated with decreased activation of and reduced functional connectivity within reward circuits involving ventral striatum and ventromedial prefrontal cortex in association with anhedonia. Here, we review recent evidence of relationships between inflammation and anhedonia, while highlighting translational and mechanistic work describing the impact of inflammation on synthesis, release, and reuptake of neurotransmitters like dopamine and glutamate that affects circuits to drive motivational deficits. We will then present insight into novel pharmacological strategies that target either inflammation or its downstream effects on the brain and behavior. The meaningful translation of these concepts through appropriately designed trials targeting therapies for psychiatric patients with high inflammation and transdiagnostic symptoms of anhedonia is also discussed.


Asunto(s)
Anhedonia , Recompensa , Anhedonia/fisiología , Animales , Encéfalo/fisiología , Humanos , Inflamación/complicaciones , Corteza Prefrontal/metabolismo
16.
Mol Psychiatry ; 27(1): 180-191, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34404915

RESUMEN

Deficits in cognition, reward processing, and motor function are clinical features relevant to both aging and depression. Individuals with late-life depression often show impairment across these domains, all of which are moderated by the functioning of dopaminergic circuits. As dopaminergic function declines with normal aging and increased inflammatory burden, the role of dopamine may be particularly salient for late-life depression. We review the literature examining the role of dopamine in the pathogenesis of depression, as well as how dopamine function changes with aging and is influenced by inflammation. Applying a Research Domain Criteria (RDoC) Initiative perspective, we then review work examining how dopaminergic signaling affects these domains, specifically focusing on Cognitive, Positive Valence, and Sensorimotor Systems. We propose a unified model incorporating the effects of aging and low-grade inflammation on dopaminergic functioning, with a resulting negative effect on cognition, reward processing, and motor function. Interplay between these systems may influence development of a depressive phenotype, with an initial deficit in one domain reinforcing decline in others. This model extends RDoC concepts into late-life depression while also providing opportunities for novel and personalized interventions.


Asunto(s)
Depresión , Dopamina , Cognición , Recompensa
17.
Transl Psychiatry ; 11(1): 456, 2021 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-34482366

RESUMEN

Inflammation is associated with the development of anhedonia in major depression (MD), but the pathway by which inflammatory molecules gain access to the brain and lead to anhedonia is not clear. Molecules of the kynurenine pathway (KP), which is activated by inflammation, readily influx into the brain and generate end products that alter brain chemistry, disrupt circuit functioning, and result in the expression of inflammatory behaviors such as anhedonia. We examined the impact of plasma and CSF KP metabolites on brain chemistry and neural function using multimodal neuroimaging in 49 depressed subjects. We measured markers of glial dysfunction and distress including glutamate (Glu) and myo-inositol in the left basal ganglia using magnetic resonance spectroscopy (MRS); metrics of local activity coherence (regional homogeneity, ReHo) and functional connectivity from resting-state functional MRI measures; and anhedonia from the Inventory for Depressive Symptoms-Self Report Version (IDS-SR). Plasma kynurenine/tryptophan (KYN/TRP) ratio and cerebrospinal fluid (CSF) 3-hydroxykynurenine (3HK) were associated with increases in left basal ganglia myo-inositol. Plasma kynurenic acid (KYNA) and KYNA/QA were associated with decreases and quinolinic acid (QA) with increases in left basal ganglia Glu. Plasma and CSF KP were associated with decreases in ReHo in the basal ganglia and dorsomedial prefrontal regions (DMPFC) and impaired functional connectivity between these two regions. DMPFC-basal ganglia mediated the effect of plasma and CSF KP on anhedonia. These findings highlight the pathological impact of KP system dysregulation in mediating inflammatory behaviors such as anhedonia.


Asunto(s)
Depresión , Quinurenina , Ganglios Basales/diagnóstico por imagen , Depresión/diagnóstico por imagen , Humanos , Imagen por Resonancia Magnética , Espectroscopía de Resonancia Magnética , Recompensa
18.
Mol Psychiatry ; 26(12): 7384-7392, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34535767

RESUMEN

Inflammation impacts basal ganglia motor circuitry in association with psychomotor retardation, a key symptom of major depression (MD). We previously reported associations between circulating protein inflammatory biomarkers and psychomotor slowing as measured by neuropsychological tests probing psychomotor speed in patients with MD. To discover novel transcriptional signatures in peripheral blood immune cells related to psychomotor slowing, microarray data were analyzed in a primary cohort of 88 medically-stable, unmedicated, ambulatory MD patients. Results were confirmed and extended in a second cohort of 57 patients with treatment resistant depression (TRD) before and after anti-inflammatory challenge with the tumor necrosis factor antagonist infliximab versus placebo. Composite scores reflecting pure motor and cognitive-motor processing speed were linearly associated with 403 and 266 gene transcripts in each cohort, respectively (|R| > 0.30, p < 0.01), that were enriched for cytokine signaling and glycolysis-related pathways (p < 0.05). Unsupervised clustering in the primary cohort revealed two psychomotor slowing-associated gene co-expression modules that were enriched for interferon, interleukin-6, aerobic glycolysis, and oxidative phosphorylation pathways (p < 0.05, q < 0.1). Transcripts were predominantly derived from monocytes, plasmacytoid dendritic cells, and natural killer cells (p's < 0.05). In infliximab-treated TRD patients with high plasma C-reactive protein concentrations (>5 mg/L), two differential co-expression modules enriched for oxidative stress and mitochondrial degradation were associated with improvements in psychomotor reaction time (p < 0.05). These results indicate that inflammatory signaling and associated metabolic reprogramming in peripheral blood immune cells are associated with systemic inflammation in depression and may affect relevant brain circuits to promote psychomotor slowing.


Asunto(s)
Trastorno Depresivo Mayor , Trastorno Depresivo Resistente al Tratamiento , Proteína C-Reactiva/metabolismo , Trastorno Depresivo Mayor/tratamiento farmacológico , Trastorno Depresivo Mayor/genética , Trastorno Depresivo Mayor/metabolismo , Trastorno Depresivo Resistente al Tratamiento/tratamiento farmacológico , Humanos , Inflamación , Desempeño Psicomotor , Transcriptoma/genética
19.
Pharmacol Rev ; 73(3): 1084-1117, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34285088

RESUMEN

Exogenous administration of inflammatory stimuli to humans and laboratory animals and chronic endogenous inflammatory states lead to motivational deficits and ultimately anhedonia, a core and disabling symptom of depression present in multiple other psychiatric disorders. Inflammation impacts neurotransmitter systems and neurocircuits in subcortical brain regions including the ventral striatum, which serves as an integration point for reward processing and motivational decision-making. Many mechanisms contribute to these effects of inflammation, including decreased synthesis, release and reuptake of dopamine, increased synaptic and extrasynaptic glutamate, and activation of kynurenine pathway metabolites including quinolinic acid. Neuroimaging data indicate that these inflammation-induced neurotransmitter effects manifest as decreased activation of ventral striatum and decreased functional connectivity in reward circuitry involving ventral striatum and ventromedial prefrontal cortex. Neurocircuitry changes in turn mediate nuanced effects on motivation that include decreased willingness to expend effort for reward while maintaining the ability to experience reward. Taken together, the data reveal an inflammation-induced pathophysiologic phenotype that is agnostic to diagnosis. Given the many mechanisms involved, this phenotype represents an opportunity for development of novel and/or repurposed pharmacological strategies that target inflammation and associated cellular and systemic immunometabolic changes and their downstream effects on the brain. To date, clinical trials have failed to capitalize on the unique nature of this transdiagnostic phenotype, leaving the field bereft of interpretable data for meaningful clinical application. However, novel trial designs incorporating established targets in the brain and/or periphery using relevant outcome variables (e.g., anhedonia) are the future of targeted therapy in psychiatry. SIGNIFICANCE STATEMENT: Emerging understanding of mechanisms by which peripheral inflammation can affect the brain and behavior has created unprecedented opportunities for development of pharmacological strategies to treat deficits in motivation including anhedonia, a core and disabling symptom of depression well represented in multiple psychiatric disorders. Mechanisms include inflammation and cellular and systemic immunometabolism and alterations in dopamine, glutamate, and kynurenine metabolites, revealing a target-rich environment that nevertheless has yet to be fully exploited by current clinical trial designs and drugs employed.


Asunto(s)
Anhedonia , Encéfalo , Animales , Encéfalo/diagnóstico por imagen , Humanos , Inflamación , Motivación , Recompensa
20.
Cancer ; 127(18): 3361-3371, 2021 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-34027995

RESUMEN

BACKGROUND: The authors measured epigenetic age acceleration (EAA) during and after cancer treatment and its association with inflammation and fatigue, which is a debilitating symptom in patients with cancer. METHODS: Patients who had head and neck cancer without distant metastases were assessed before, immediately after, and at 6 months and 12 months postradiotherapy. Blood DNA methylation was assessed using a proprietary bead chip (the Illumina MethylationEPIC BeadChip). EAA was calculated using the Levine epigenetic clock (DNAmPhenoAge), adjusted for chronological age. Fatigue was assessed using the Multidimensional Fatigue Inventory-20. Inflammatory markers were measured using standard techniques. RESULTS: Most patients (N = 133) were men, White, had advanced disease, and received concurrent chemoradiation. EAA changes over time were significant, with the largest increase (4.9 years) observed immediately after radiotherapy (P < .001). Increased EAA was associated with elevated fatigue (P = .003) over time, and patients who had severe fatigue experienced 3.1 years higher EAA than those who had low fatigue (P < .001), which was more prominent (5.6 years; P = .018) for patients who had human papillomavirus-unrelated disease at 12 months posttreatment. EAA was also positively associated with inflammatory markers, including C-reactive protein (CRP) and interleukin-6 (IL-6), over time (P < .001), and patients who had high CRP and IL-6 levels exhibited increases of 4.6 and 5.9 years, respectively, in EAA compared with those who had low CRP and IL-6 levels (P < .001). CRP and IL-6 mediated the association between EAA and fatigue (CRP: 95% CI, 0.060-0.279; IL-6: 95% CI, 0.024-0.220). CONCLUSIONS: Patients with head and neck cancer experienced increased EAA, especially immediately after treatment completion. EAA was associated with greater fatigue and inflammation, including 1 year after treatment. Inflammation may be a target to reduce the impact of age acceleration on poor functional outcomes.


Asunto(s)
Epigénesis Genética , Neoplasias de Cabeza y Cuello , Aceleración , Fatiga/genética , Neoplasias de Cabeza y Cuello/genética , Neoplasias de Cabeza y Cuello/radioterapia , Humanos , Inflamación/genética , Inflamación/metabolismo , Estudios Longitudinales , Masculino
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA